scholarly journals Modeling and Optimization of Advanced Single- and Multijunction Solar Cells Based on Thin-Film a-Si:H/SiGe Heterostructure

2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Abdolnabi Kosarian ◽  
Peyman Jelodarian

In amorphous thin-film p-i-n solar cell, a thick absorber layer can absorb more light to generate carriers. On the other hand, a thin i-layer cannot absorb enough light. Thickness of the i-layer is a key parameter that can limit the performance of solar cell. Introducing Ge atoms to the Si lattice in Si-based solar cells is an effective approach in improving their characteristics. Especially, current density of the cell can be enhanced without deteriorating its open circuit voltage, due to the modulation of material band-gap and the formation of a heterostructure. This work presents a novel numerical evaluation and optimization of an amorphous silicon double-junction structure thin-film solar cell (a-SiGe:H/a-Si:H) and focuses on optimization of a-SiGe:H mid-gap single-junction solar cell based on the optimization of the Ge content in the film, thickness of i-layer, p-layer and doping concentration of p-layer in a (p-layer a-Si:H/i-layer a-SiGe:H/n-layer a-Si:H) single-junction thin-film solar cell. Optimization shows that for an appropriate Ge concentration, the efficiency of a-Si:H/a-SiGe solar cell is improved by about 6.5% compared with the traditional a-Si:H solar cells.

2011 ◽  
Vol 1321 ◽  
Author(s):  
A. Banerjee ◽  
D. Beglau ◽  
T. Su ◽  
G. Pietka ◽  
G. Yue ◽  
...  

ABSTRACTWe report on the investigation of large area a-Si:H/a-SiGe:H double-junction and a-Si:H/a-SiGe:H/a-SiGe:H triple-junction solar cells prepared by our proprietary High Frequency (HF) glow discharge technique. For investigative purposes, we initially used the simpler double-junction structure. We studied the effect of: (1) Ge content, (2) cell thickness, and (3) SiH4 and GeH4 gas flow on the light-induced degradation of the solar cells. Our results show that the double-junction cells with different Ge concentration have open-circuit voltage (Voc) in the range of 1.62-1.75 V. Voc exhibits a flat plateau in the range of 1.65-1.72 V for both initial and stabilized states. The light-induced degradation for cells in this range of Voc is insensitive to the Ge content. In terms of thickness dependence of the intrinsic layers, we found that the initial efficiency increases with cell thickness in the thickness range 2000-4000 Å. However, light-induced degradation increases with increasing thickness. Consequently, the stabilized efficiency is invariant with cell thickness in the thickness range studied. The results of SiH4 and GeH4 gas flow on cell characteristics demonstrate that the deposition rate decreases by only 20% when the active gas flow is reduced to 0.25 times standard flow. The initial and stabilized efficiencies are similar. The information gleaned from the study was used to fabricate high efficiency, large area (~464 cm2) double- and triple-junction solar cells. The highest stable efficiency, as measured by NREL, was 9.8% and 11.0% for the double- and triple-junction structures, respectively.


2017 ◽  
Vol 10 (5) ◽  
pp. 1134-1141 ◽  
Author(s):  
Bofei Liu ◽  
Lisha Bai ◽  
Tiantian Li ◽  
Changchun Wei ◽  
Baozhang Li ◽  
...  

A highly efficient quadruple-junction silicon based thin-film solar cell with a remarkably high open-circuit voltage was demonstrated to inspire functional photoelectrical devices for environmental applications.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Peyman Jelodarian ◽  
Abdolnabi Kosarian

The effect of p-layer and i-layer characteristics such as thickness and doping concentration on the electrical behaviors of the a-Si:H/a-SiGe:H thin film heterostructure solar cells such as electric field, photogeneration rate, and recombination rate through the cell is investigated. Introducing Ge atoms to the Si lattice in Si-based solar cells is an effective approach in improving their characteristics. In particular, current density of the cell can be enhanced without deteriorating its open-circuit voltage. Optimization shows that for an appropriate Ge concentration, the efficiency of a-Si:H/a-SiGe solar cell is improved by about 6% compared with the traditional a-Si:H solar cell. This work presents a novel numerical evaluation and optimization of amorphous silicon double-junction (a-Si:H/a-SiGe:H) thin film solar cells and focuses on optimization of a-SiGe:H midgap single-junction solar cell based on the optimization of the doping concentration of the p-layer, thicknesses of the p-layer and i-layer, and Ge content in the film. Maximum efficiency of 23.5%, with short-circuit current density of 267 A/m2and open-circuit voltage of 1.13 V for double-junction solar cell has been achieved.


2011 ◽  
Vol 685 ◽  
pp. 60-64 ◽  
Author(s):  
Shui Yang Lien ◽  
Meng Jia Yang ◽  
Yang Shih Lin ◽  
Chia Fu Chen ◽  
Po Hung Lin ◽  
...  

It is widely accepted that graded buffer layer between the p-layer and i-layer increase the efficiency of amorphous silicon solar cells. The open-circuit voltage (Voc), short current density (Jsc) and fill factor (FF) of the thin film solar cell are obviously increased. In the present study, hydrogenated amorphous silicon (a-Si:H) thin film solar cells have been fabricated by 27.12 MHz plasma enhanced chemical vapor deposition (PECVD). We discussed the three conditions at the p/i interface without buffer layer, buffer layer and graded buffer layer of thin film solar cells by TCAD software. The influences of the performance of the solar cell with the different buffer layer are investigated. The cell with graded buffer layer has higher efficiency compared with the cells without buffer layer and buffer layer. The graded buffer layer enhances the conversion efficiency of the solar cell by improving Vocand FF. It could be attributed to a reduction of interface recombination rate near the junction. The best performance of conversion efficiency (η)=8.57% (Voc=0.81 V, Jsc=15.46 mA/cm2, FF=68%) of the amorphous silicon thin film solar cell was achieved.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1684
Author(s):  
Alessandro Romeo ◽  
Elisa Artegiani

CdTe is a very robust and chemically stable material and for this reason its related solar cell thin film photovoltaic technology is now the only thin film technology in the first 10 top producers in the world. CdTe has an optimum band gap for the Schockley-Queisser limit and could deliver very high efficiencies as single junction device of more than 32%, with an open circuit voltage of 1 V and a short circuit current density exceeding 30 mA/cm2. CdTe solar cells were introduced at the beginning of the 70s and they have been studied and implemented particularly in the last 30 years. The strong improvement in efficiency in the last 5 years was obtained by a new redesign of the CdTe solar cell device reaching a single solar cell efficiency of 22.1% and a module efficiency of 19%. In this paper we describe the fabrication process following the history of the solar cell as it was developed in the early years up to the latest development and changes. Moreover the paper also presents future possible alternative absorbers and discusses the only apparently controversial environmental impacts of this fantastic technology.


Author(s):  
F. Bonnín-Ripoll ◽  
Ya. B. Martynov ◽  
R. G. Nazmitdinov ◽  
G. Cardona ◽  
R. Pujol-Nadal

A thorough optical + electrical + Lambertian scattering analysis determines the optimal thickness of a perovskite thin-film solar cell revealing its high efficiency with inorganic HTMs.


2015 ◽  
Vol 44 (1) ◽  
pp. 26-32 ◽  
Author(s):  
F. Aziz ◽  
Z. Ahmad ◽  
S.M. Abdullah ◽  
K. Sulaiman ◽  
M.H. Sayyad

Purpose – The purpose of this paper is to study the optical and electrical characteristics of a single-junction solar cell based on a green-colour dye vanadyl 2,9,16, 23-tetraphenoxy-29H, 31H-phthalocyanine (VOPcPhO). The use of soluble vanadyl phthalocyanine derivative makes it very attractive for photovoltaic applications due to its tunable properties and high solubility. Design/methodology/approach – A photoactive layer of VOPcPhO has been sandwiched between indium tin oxide (ITO) and aluminium (Al) electrodes to produce a ITO/PEDOT:PSS/VOPcPhO/Al photovoltaic device. The VOPcPhO thin film is deposited by a simple spin coating technique. To obtain the optimal thickness for the solar cell device, different thicknesses of the photoactive layer, achieved by manipulating the spin rate, have been investigated. Findings – The device exhibited photovoltaic effect with the values of Jsc, Voc and FF equal to 5.26 × 10-6 A/cm2, 0.621 V and 0.33, respectively. The electronic parameters of the cell have been obtained from the analysis of current-voltage characteristics measured in dark. The values of ideality factor and barrier height were found to be 2.69 and 0.416 eV, respectively. The optical examination showed that the material is sensitive to light in the UV region between 270 nm and 410 nm, as well as in the visible spectrum within the range of 630 nm and 750 nm. Research limitations/implications – The solar cell based on a single layer of vanadyl phthalocyanine derivative results in low efficiency, which can be enhanced by introducing a variety of donor materials to form bulk heterojunction solar cells. Practical implications – The spin coating technique provides a simple, less expensive and effective approach for preparing thin films. Originality/value – A novel thin-film, single-junction organic solar cell, fabricated by using VOPcPhO, has been investigated for the first time ever. The vanadyl phthalocyanine derivative together with a donor material will have potential application for improved efficiency of the solar cells.


1998 ◽  
Vol 507 ◽  
Author(s):  
J. Yang ◽  
S. Sugiyama ◽  
S. Guha

ABSTRACTWe have studied amorphous silicon alloy solar cells made by using a modified-very-highfrequency glow discharge at 75 MHz with a deposition rate of ∼6 Å/s. The solar cell performance is compared with those made from conventional glow discharge at 13.56 MHz with lower deposition rates. Cells made at ∼6 Å/s with 75 MHz showed comparable stabilized efficiency to those made at ∼3 Å/s with 13.56 MHz. The best performance, however, was obtained with ∼1 Å/s, including a stabilized 9.3% a-Si alloy single-junction cell employing conventional glow discharge technique. Using 75 MHz, we have achieved 11.1% and 10.0% initial active-area efficiencies for a-Si alloy and a-SiGe alloy n i p cells, respectively. An initial efficiency of 11.0% has also been obtained in a dual bandgap double-junction structure.


2011 ◽  
Vol 378-379 ◽  
pp. 601-605 ◽  
Author(s):  
Saleh N. Alamri ◽  
M. S. Benghanem ◽  
A. A. Joraid

This study investigates the preparation of the three main layers of a CdS/CdTe thin film solar cell using a single vacuum system. A Close Space Sublimation System was constructed to deposit CdS, CdTe and CdCl2 solar cell layers. Two hot plates were used to heat the source and the substrate. Three fused silica melting dishes were used as containers for the sources. The properties of the deposited CdS and CdTe films were determined via Atomic force microscopy, scanning electron microscopy, X-ray diffraction and optical transmission spectroscopy. An J-V characterization of the fabricated CdS/CdTe solar cells was performed under solar radiation. The short-circuit current density, Jsc, the open-circuit voltage, Voc, fill factor, FF and conversion efficiency, η, were measured and yielded values of 27 mA/cm2, 0.619 V, 58% and 9.8%, respectively.


RSC Advances ◽  
2016 ◽  
Vol 6 (8) ◽  
pp. 6562-6570 ◽  
Author(s):  
Fang Qin Zeng ◽  
Yan Qing Lai ◽  
Zi Li Han ◽  
Boon K. Ng ◽  
Zhi An Zhang ◽  
...  

A CZTSSe thin film solar cell was fabricated by a sol–gel method with an efficiency of 8.08%.


Sign in / Sign up

Export Citation Format

Share Document