scholarly journals Comparison of Lipase Production by Enterococcus faecium MTCC 5695 and Pediococcus acidilactici MTCC 11361 Using Fish Waste as Substrate: Optimization of Culture Conditions by Response Surface Methodology

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Vrinda Ramakrishnan ◽  
Louella Concepta Goveas ◽  
Bhaskar Narayan ◽  
Prakash M. Halami

A medium using fish waste as substrate was designed for production of lipase by Enterococcus faecium MTCC 5695 and Pediococcus acidilactici MTCC 11361. Medium components and culture conditions (fish waste protein hydrolysate (FWPH) concentration, fish waste oil (FWO) concentration, pH, temperature, and fermentation time) which affect lipase production were screened using factorial (5 factors ∗ 2 levels) design of which FWPH concentration, FWO concentration, and fermentation time showed significance (). The levels of these factors were optimized further by Box-Behnken design using response surface methodology (RSM). Optimized conditions were found to be 5% v/v FWO, 0.15 mg/mL FWPH and 24 h of fermentation time for MTCC 5695, and 4% v/v FWO, 0.15 mg/mL FWPH and 24 h of fermentation for MTCC 11361, which were further validated. Under optimized conditions, MTCC 5695 and MTCC 11361 showed 3.15- (543.63 to 1715 U/mL) and 2.3- (214.74 to 493 U/mL) fold increase in lipase production, respectively, as compared to unoptimized conditions.


2020 ◽  
Vol 9 (10) ◽  
pp. e479108135
Author(s):  
Elaine Cristina da Silva ◽  
Priscilla Régia de Andrade Calaça ◽  
Ana Lúcia Figueiredo Porto ◽  
Raquel Pedrosa Bezerra ◽  
Maria Taciana Cavalcanti Vieira Soares

In this study, recycled medium from three photosynthetic microorganisms (Chlorella vulgaris, Dunaliella tertiolecta and Arthrospira platensis) was evaluated for use in producing β-galactosidase, an enzyme traditionally used to degrade lactose in dairy products. Recycled medium from Chlorella vulgaris was selected to optimize culture medium to be used to produce β-galactosidase by Enterococcus faecium in submerged fermentation. Response Surface Methodology (RSM) was used to optimize the levels of the variables: temperature (30-40°C), lactose concentration (0-5%), fermentation time (12-24h), pH (6-8) and their interaction. All variables studied had a statistically significant effect on the production of β-galactosidase. The optimal conditions for producing the enzyme were achieved: temperature of 31ºC, lactose concentration of 5.34%, fermentation time of 12h and pH of 8.0. Under these conditions, the β-galactosidase activity was 29.85 U/mL which was quite close to the predicted value (30.83 U/mL). Finally, it can be concluded that recycled medium from optimized C. vulgaris supernatant may well be important for the biotechnology industry as it is an abundant low-cost source for producing β-galactosidase by Enterococcus faecium.



2011 ◽  
Vol 271-273 ◽  
pp. 569-572
Author(s):  
Han Gao ◽  
Ben Guo Liu ◽  
Su Fang Fu

Based on a series of single factor experiments, response surface methodology was employed to predict optimum conditions for domestication of lactic acid bacteria to prepare jujube lactic acid fermented beverage. A central composite design involving jujube puree content, fermentation temperature and inoculum size was used, and second-order model for viable biomass was employed to generate the response surface. The optimized conditions were as follows: jujube puree content 71.85 %, fermentation temperature 41.57°C and inoculum size 3.66%. The predicted viable biomass under the conditions was 3.099×108 cfu/mL. The practical conditions were modified as follows: jujube puree content 72 %, fermentation temperature 41°C, and inoculum size 3.7% (fermentation time 8 h).Experimental verification gave the value of 2.99×108 cfu/mL.



2018 ◽  
Vol 17 (4) ◽  
pp. 349-354
Author(s):  
Qadir Rahman ◽  
Anwar Farooq ◽  
Amjad Gilani Mazhar ◽  
Nadeem Yaqoob Muhammad ◽  
Ahmad Mukhtar

This study investigates the effect of enzyme formulations (Zympex-014, Kemzyme dry-plus and Natuzyme) on recovery of phenolics from Peganum hermala (harmal) leaves, under optimized conditions using response surface methodology. As compared to the other enzyme complexes, the yield (34 g/100g) obtained through Zympex-014-assisted extraction was higher under optimized conditions such as time (75 min), temperature (70°C), pH (6.5) and enzyme concentration (5 g/100 g) using central composite design (CCD). Effectiveness of Zympex-014 towards hydrolysis of P. hermala leaves cell wall was examined by analyzing the control and enzyme-treated leave residues using scanning electron microscope (SEM). GC/MS characterization authenticated the presence of quercetin (1.44), gallic acid (0.23), caffeic acid (0.04), cinnamic acid (0.05), m-coumaric acid (0.23) and p-coumaric acid (0.37 μg/g) as the potent phenolics in Zympex-014 based extract. It can be concluded from the findings of the current work that pre-treatment of P. hermala leaves with Zympex-014 significantly enhanced the recovery of phenolics that supports its potential uses in the nutra-pharamaceutical industry.





2006 ◽  
Vol 41 (9) ◽  
pp. 1940-1944 ◽  
Author(s):  
Chien-Hung Liu ◽  
Wei-Bin Lu ◽  
Jo-Shu Chang


2012 ◽  
Vol 581-582 ◽  
pp. 819-822 ◽  
Author(s):  
Bin Meng ◽  
Jin Hui Peng

The corundum-mullite was toughened by in-situ synthesized mullite whiskers and the process parameters influencing the fracture toughness of corundum-mullite, such as sintering temperature, addition amount of AlF3 and V2O5, were optimized by means of response surface method. Corundum-mullite with fracture toughness of 9.44 MPa.m-1/2 could be obtained under the optimized conditions, i.e. sintering temperature of 1400°C, 4.8 wt.% of AlF3 and 5.8 wt.% of V2O5. The results showed that it was feasible to prepare corundum-mullite toughened by in-situ synthesized mullite whiskers by the optimized parameters. In addition, an accurate model based on response surface method was proposed to predict the experimental results.



Sign in / Sign up

Export Citation Format

Share Document