scholarly journals Physicochemical Properties and Heavy Metal Concentration in Borehole Water of Boko Haram Affected Areas of Madagali and Michika, Adamawa State, Nigeria

2021 ◽  
Vol 2 (6) ◽  
pp. 1-9
Author(s):  
Richard Muita

The impacts of increased water levels in Kenyan lakes are a major problem that is affecting communities and their livelihoods. Upsurge in water levels of the Rift Valley Lakes is one of the recent climate extremes witnessed over Eastern Africa where the rises appear to be consistent with the occurrence of enhanced seasonal rains between 2016 and 2020. Considering that many explanations have been provided as possible causes, there is still little empirical evidences. This study aimed at assessing the link between meteorological factors and the rises in lake levels in order to see if these can explain the causes. Further using surface observations potential to predict the water levels was examined. Datasets on rainfall, temperature and water levels from four Lakes in Kenya were used to establish the changes in these variables using statistical methods. Generalized Linear Models were used to predict the water levels in the study lakes. Results indicate that rainfall and temperature as well as other climate drivers has been changing over the last recent years with increased precipitation being consistent with the observed high stands in the Rift Valley lakes. Specifically, the results of the forecasted levels indicate substantial and slight increase for lake levels in Naivasha while the Lake Baringo levels are predicted to rise sharply within the study data periods.

2021 ◽  
Vol 2 (6) ◽  
pp. 1-9
Author(s):  
Richard Muita

The impacts of increased water levels in Kenyan lakes are a major problem that is affecting communities and their livelihoods. Upsurge in water levels of the Rift Valley Lakes is one of the recent climate extremes witnessed over Eastern Africa where the rises appear to be consistent with the occurrence of enhanced seasonal rains between 2016 and 2020. Considering that many explanations have been provided as possible causes, there is still little empirical evidences. This study aimed at assessing the link between meteorological factors and the rises in lake levels in order to see if these can explain the causes. Further using surface observations potential to predict the water levels was examined. Datasets on rainfall, temperature and water levels from four Lakes in Kenya were used to establish the changes in these variables using statistical methods. Generalized Linear Models were used to predict the water levels in the study lakes. Results indicate that rainfall and temperature as well as other climate drivers has been changing over the last recent years with increased precipitation being consistent with the observed high stands in the Rift Valley lakes. Specifically, the results of the forecasted levels indicate substantial and slight increase for lake levels in Naivasha while the Lake Baringo levels are predicted to rise sharply within the study data periods.


2021 ◽  
Vol 36 ◽  
pp. 100857
Author(s):  
Mathew Herrnegger ◽  
Gabriel Stecher ◽  
Christian Schwatke ◽  
Luke Olang

2021 ◽  
Vol 13 (18) ◽  
pp. 3705
Author(s):  
Xin Zhang ◽  
Abilgazi Kurbaniyazov ◽  
Georgiy Kirillin

Lake level is a sensitive integral indicator of climate change on regional scales, especially in enclosed endorheic basins. Eurasia contains the largest endorheic zone with several large terminal lakes, whose water levels recently underwent remarkable variations. To address the patterns of these variations and their links to the climate change, we investigated the variability of levels in 15 lakes of three neighboring endorheic regions—Central Asia, Tibetan Plateau, and Mongolian Plateau. Satellite altimetry revealed a heterogeneous pattern among the regions during 1992–2018: lake levels increased significantly in Central Asia and the Tibetan Plateau but decreased on the Mongolian Plateau. The shifts to the increasing trend were detected since 1997 in Central Asia, since 1998 in the southern part of the Tibetan Plateau, and since 2005 in its northern part. The shift in air temperatures around 1997 and the precipitation shifts around 1998 and 2004 contributed to the trend’s turning points, with precipitation being the major contributor to the heterogeneous pattern of lake levels. Our findings reveal the linkage of the heterogeneous pattern of lake levels to climatic factors in the endorheic basins, providing a further understanding of the hydrological regime in the Eurasian endorheic zone and its sensitivity to climate change.


2010 ◽  
Vol 124 (3) ◽  
pp. 219
Author(s):  
C. Stuart Houston ◽  
Frank Scott ◽  
Rob B. Tether

Between 1975 and 2002, diminished breeding success of Ospreys was associated with drought and falling lake levels in the western half of our study area near the town of Loon Lake, west-central Saskatchewan. Only 46% of nest attempts were successful in the west compared to 72% in the east, producing 0.88 young per accessible nest in the west and 1.42 in the east. Breeding success was greater in the eastern half, where water levels were stable, in spite of increased human use of the resort lakes there. Our unique long-term Canadian data base results support Ogden's 1977 prediction that Osprey productivity may decrease when water levels drop and fish populations are reduced.


Hydrobiologia ◽  
1994 ◽  
Vol 288 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Elizabeth Kebede ◽  
Zinabu G. Mariam ◽  
Ingemar Ahlgren

2021 ◽  
Author(s):  
Femke Augustijns ◽  
Nils Broothaerts ◽  
Gert Verstraeten

<p>Within eastern Africa, Ethiopia stands out for its steep topography, resulting in an altitudinal zonation of climate and vegetation. To understand future vegetation changes, we need information on past vegetation covers and vegetation responses to environmental and climatic changes. Pollen studies are available for low and high elevations in Ethiopia, but they are low in number and limited in spatial coverage. In addition, explicit research to altitudinal patterns of environmental changes are missing. However, archaeological evidence from SW Ethiopia suggests vertical migration of humans in response to humidity fluctuations, highlighting the need for research to spatial dynamics of human activities and vegetation in Ethiopia. On the other hand, sedimentological evidence suggests a millennia long agricultural history in Ethiopia’s highlands and several authors identify this region as a center of plant domestication. </p><p>It is clear that a thorough understanding of the past vegetation cover and its alteration by humans and climate is missing for Ethiopia. These research gaps impede identification of the timing and location of the onset of agriculture in the ancient Ethiopian landscape, resulting in poor understanding of e.g. contemporary degraded landforms. In our study, we aim to reconstruct and quantify the vegetation history along an altitudinal gradient in the Southern Ethiopian Rift Valley and to identify the role of man and climate on this evolution. Therefore, several lakes and swamps are selected as study sites along an altitudinal gradient (1100-3000 m a.s.l.) in the Gamo Highlands near the city of Arba Minch, along the Southern Ethiopian Rift Valley. Here, we will present the results of pollen, charcoal and NPP analyses from two wetland sites situated at 2300 and 3000 m a.s.l. The records show an increase of Afromontane forest taxa around 13 ka BP, at the expense of Montane ericaceous taxa. At 8 ka BP, a shift in the composition of the Afromontane forest is observed, together with a change in the fungal assemblage and decrease of grasses. Around 6 ka BP, Wooded grassland taxa increase simultaneously with <em>Delitschia</em> fungal spores. Montane forest taxa increase again at 2.5 ka BP, together with a shift in fungal spores, followed by an increase in charcoal accumulation during the last millennium. Most of the observed transitions can be linked to other vegetation records from Ethiopia, and reflect responses to climatic changes such as the African Humid Period. However, the exact timing and  nature of the vegetation changes differs substantially between records, and asks for a denser sampling of palaeoecological records across Ethiopia. In this study, we will link the reconstructed vegetation changes with anthropogenic and natural driving forces, and come up with a reconstruction of the long-term landscape development in the study area in SW Ethiopia.   </p>


2016 ◽  
Vol 11 (1s) ◽  
Author(s):  
Joseph Leedale ◽  
Adrian M. Tompkins ◽  
Cyril Caminade ◽  
Anne E. Jones ◽  
Grigory Nikulin ◽  
...  

The effect of climate change on the spatiotemporal dynamics of malaria transmission is studied using an unprecedented ensemble of climate projections, employing three diverse bias correction and downscaling techniques, in order to partially account for uncertainty in climate- driven malaria projections. These large climate ensembles drive two dynamical and spatially explicit epidemiological malaria models to provide future hazard projections for the focus region of eastern Africa. While the two malaria models produce very distinct transmission patterns for the recent climate, their response to future climate change is similar in terms of sign and spatial distribution, with malaria transmission moving to higher altitudes in the East African Community (EAC) region, while transmission reduces in lowland, marginal transmission zones such as South Sudan. The climate model ensemble generally projects warmer and wetter conditions over EAC. The simulated malaria response appears to be driven by temperature rather than precipitation effects. This reduces the uncertainty due to the climate models, as precipitation trends in tropical regions are very diverse, projecting both drier and wetter conditions with the current state-of-the-art climate model ensemble. The magnitude of the projected changes differed considerably between the two dynamical malaria models, with one much more sensitive to climate change, highlighting that uncertainty in the malaria projections is also associated with the disease modelling approach.


2019 ◽  
Vol 100 (6) ◽  
pp. 1011-1027 ◽  
Author(s):  
Chris Funk ◽  
Shraddhanand Shukla ◽  
Wassila Mamadou Thiaw ◽  
James Rowland ◽  
Andrew Hoell ◽  
...  

AbstractOn a planet with a population of more than 7 billion, how do we identify the millions of drought-afflicted people who face a real threat of livelihood disruption or death without humanitarian assistance? Typically, these people are poor and heavily dependent on rainfed agriculture and livestock. Most live in Africa, Central America, or Southwest Asia. When the rains fail, incomes diminish while food prices increase, cutting off the poorest (most often women and children) from access to adequate nutrition. As seen in Ethiopia in 1984 and Somalia in 2011, food shortages can lead to famine. Yet these slow-onset disasters also provide opportunities for effective intervention, as seen in Ethiopia in 2015 and Somalia in 2017. Since 1985, the U.S. Agency for International Development’s Famine Early Warning Systems Network (FEWS NET) has been providing evidence-based guidance for effective humanitarian relief efforts. FEWS NET depends on a Drought Early Warning System (DEWS) to help understand, monitor, model, and predict food insecurity. Here we provide an overview of FEWS NET’s DEWS using examples from recent climate extremes. While drought monitoring and prediction provides just one part of FEWS NET’s monitoring system, it draws from many disciplines—remote sensing, climate prediction, agroclimatic monitoring, and hydrologic modeling. Here we describe FEWS NET’s multiagency multidisciplinary DEWS and Food Security Outlooks. This DEWS uses diagnostic analyses to guide predictions. Midseason droughts are monitored using multiple cutting-edge Earth-observing systems. Crop and hydrologic models can translate these observations into impacts. The resulting information feeds into FEWS NET reports, helping to save lives by motivating and targeting timely humanitarian assistance.


Sign in / Sign up

Export Citation Format

Share Document