scholarly journals Evaluation of Vibration Amplitude Stepping and Welding Performance of 20 kHz and 40 kHz Ultrasonic Power of Metal Welding

Author(s):  
Dr. Ziad Shakeeb Al Sarraf ◽  
◽  
Dr. Ahmed Fattah Ahmed ◽  
Mr. Khalid Alias Hammo ◽  
◽  
...  

Today ultrasonic power technique is consider a mandatory technique which is always entered in many processes such as in metal and plastic welding to overcomes many issues, with aided of applying force (pressure) and supplied high frequency vibration, a solid-state weld can be generated by ultrasonic metal welding technique. That give a technique the ability to join not only a small components, whereas also to join thicker specimens, depend on a proper control of matching welding conditions. Therefore a welding performance can be study and compared after designed welding horn to resonance at frequencies of 20 kHz and 40 kHz. The analyses of the designed horn are completed through use a vibration mathematical expressions, modal and harmonic analyses to ensure the weldability due to applying ultrasonic power to the working area and also to compare the performance of joint at using two resonance frequencies of 20 kHz and 40 kHz. The dimensions of the horns were determined to match the selected resonance frequencies, which the lengths were calculated as 132 mm and 66 mm respectively. The analysis of the exciting modal indicates that the axial vibration modes of 19,584Hz and 39,794Hz are obtained in 10th mode, while the two frequency values are recorded 19,600 Hz and 39,800 Hz from the frequency response of the two horns. The weld strength between Al and Cu specimens with a thickness 0.5 mm were evaluated using tensile test, which the analyses were obtained under using different welding pressure and varied amplitudes. The results were recorded within exciting a horn with two different resonance frequencies, show the enhancement of weld strength and quality through control of stepping amplitude, the enhancement means obtain good strength of the weld, reduce sticking horn to specimen, and lower specimen marking.

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Ziad Shakeeb Al Sarraf

Today ultrasonic power technique is consider a mandatory technique which is always entered in many processes such as in metal and plastic welding to overcomes many issues, with aided of applying force (pressure) and supplied high frequency vibration, a solid-state weld can be generated by ultrasonic metal welding technique. That give a technique the ability to join not only a small components, whereas also to join thicker specimens, depend on a proper control of matching welding conditions. Therefore a welding performance can be study and compared after designed welding horn to resonance at frequencies of 20 kHz and 40 kHz. The analyses of the designed horn are completed through use a vibration mathematical expressions, modal and harmonic analyses to ensure the weldability due to applying ultrasonic power to the working area and also to compare the performance of joint at using two resonance frequencies of 20 kHz and 40 kHz. The dimensions of the horns were determined to match the selected resonance frequencies, which the lengths were calculated as 132 mm and 66 mm respectively. The analysis of the exciting modal indicates that the axial vibration modes of 19,584Hz and 39,794Hz are obtained in 10th mode, while the two frequency values are recorded 19,600 Hz and 39,800 Hz from the frequency response of the two horns. The weld strength between Al and Cu specimens with a thickness 0.5 mm were evaluated using tensile test, which the analyses were obtained under using different welding pressure and varied amplitudes. The results were recorded within exciting a horn with two different resonance frequencies, show the enhancement of weld strength and quality through control of stepping amplitude, the enhancement means obtain good strength of the weld, reduce sticking horn to specimen, and lower specimen marking.


Author(s):  
Ziad Shakeeb Al Sarraf ◽  
Ahmed Fattah Ahmed ◽  
Mr. Khalid Alias Hammo

Today ultrasonic power technique is consider a mandatory technique which is always entered in many processes such as in metal and plastic welding to overcomes many issues, with aided of applying force (pressure) and supplied high frequency vibration, a solid-state weld can be generated by ultrasonic metal welding technique. That give a technique the ability to join not only a small components, whereas also to join thicker specimens, depend on a proper control of matching welding conditions. Therefore a welding performance can be study and compared after designed welding horn to resonance at frequencies of 20 kHz and 40 kHz. The analyses of the designed horn are completed through use a vibration mathematical expressions, modal and harmonic analyses to ensure the weldability due to applying ultrasonic power to the working area and also to compare the performance of joint at using two resonance frequencies of 20 kHz and 40 kHz. The dimensions of the horns were determined to match the selected resonance frequencies, which the lengths were calculated as 132 mm and 66 mm respectively. The analysis of the exciting modal indicates that the axial vibration modes of 19,584Hz and 39,794Hz are obtained in 10th mode, while the two frequency values are recorded 19,600 Hz and 39,800 Hz from the frequency response of the two horns. The weld strength between Al and Cu specimens with a thickness 0.5 mm were evaluated using tensile test, which the analyses were obtained under using different welding pressure and varied amplitudes. The results were recorded within exciting a horn with two different resonance frequencies, show the enhancement of weld strength and quality through control of stepping amplitude, the enhancement means obtain good strength of the weld, reduce sticking horn to specimen, and lower specimen marking


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 853
Author(s):  
Dongmei Xu ◽  
Wenzhong Yang ◽  
Xuhui Zhang ◽  
Simiao Yu

An ultrasonic motor as a kind of smart material drive actuator has potential in robots, aerocraft, medical operations, etc. The size of the ultrasonic motor and complex circuit limits the further application of ultrasonic motors. In this paper, a single-phase driven ultrasonic motor using Bending-Bending vibrations is proposed, which has advantages in structure miniaturization and circuit simplification. Hybrid bending vibration modes were used, which were excited by only single-phase voltage. The working principle based on an oblique line trajectory is illustrated. The working bending vibration modes and resonance frequencies of the bending vibration modes were calculated by the finite element method to verify the feasibility of the proposed ultrasonic motor. Additionally, the output performance was evaluated by experiment. This paper provides a single-phase driven ultrasonic motor using Bending-Bending vibrations, which has advantages in structure miniaturization and circuit simplification.


2014 ◽  
Vol 658 ◽  
pp. 261-268
Author(s):  
Jean Louis Ntakpe ◽  
Gilbert Rainer Gillich ◽  
Florian Muntean ◽  
Zeno Iosif Praisach ◽  
Peter Lorenz

This paper presents a novel non-destructive method to locate and size damages in frame structures, performed by examining and interpreting changes in measured vibration response. The method bases on a relation, prior contrived by the authors, between the strain energy distribution in the structure for the transversal vibration modes and the modal changes (in terms of natural frequencies) due to damage. Using this relation a damage location indicator DLI was derived, which permits to locate cracks in spatial structures. In this paper an L-frame is considered for proving the applicability of this method. First the mathematical expressions for the modes shapes and their derivatives were determined and simulation result compared with that obtained by finite element analysis. Afterwards patterns characterizing damage locations were derived and compared with measurement results on the real structure; the DLI permitted accurate localization of any crack placed in the two structural elements.


2009 ◽  
Vol 83-86 ◽  
pp. 1129-1134 ◽  
Author(s):  
Yong Bo Wu ◽  
Takashi Sato ◽  
Jian Hui Qiu ◽  
Wei Min Lin

This paper proposes an alternative ultrasonic welding technique capable of welding plastic parts with different shapes and sizes. In this method, a thin plastic sheet of less than 0.5 mm in thickness is fixed to the ultrasonic vibration body called the horn, and two plastic workpieces to be welded are pressed upon the sheet from both sides at a constant normal pressure. Once the horn starts to ultrasonically vibrate, frictional heat is momentarily generated between the sheet and the plastic workpieces, increasing the frictional temperature to a high level. When the temperature increases to over the melting point of all the materials, the materials melt and eventually are welded after the ultrasonic vibration stops. In the current work, an experimental apparatus was designed and constructed. A series of experiments was subsequently carried out on the apparatus to investigate how the surface roughness of the workpieces, the welding time, and the normal welding pressure affect the actual welding area and the tensile strength of the welded workpieces. The experimental results showed that a bigger welding area and a higher tensile strength can be obtained under the appropriate welding conditions, providing validation of the new welding method.


1999 ◽  
Vol 122 (2) ◽  
pp. 233-239 ◽  
Author(s):  
K. D. Murphy ◽  
T. A. Lambert,

This is an experimental investigation of the effects of forced transverse vibrations on the local heat transfer characteristics of a heated, pinned-pinned beam. In particular, the response of a cylindrical beam near its first two natural frequencies, corresponding to the first two vibration modes, is considered. The results show that there is a strong spatial variation in the local Nusselt number and that these variations are closely related to the mode shape of the response. Because the heat transfer measurements were taken at the resonance frequencies, where the structural response was greatest, the measured Nusselt numbers provide an upper bound for the increased convection due to flexible body vibrations, i.e., in the absence of any rigid-body mode. The possibility of large-amplitude nonlinear vibrations are discussed (though they were not witnessed experimentally) in a theoretical framework. [S0022-1481(00)01702-3]


Ultrasonics ◽  
2004 ◽  
Vol 42 (1-9) ◽  
pp. 131-137 ◽  
Author(s):  
Jiromaru Tsujino ◽  
Misugi Hongoh ◽  
Masafumi Yoshikuni ◽  
Hidekazu Hashii ◽  
Tetsugi Ueoka

Author(s):  
Mohamed M. R. El-Hebeary ◽  
Mustafa H. Arafa ◽  
Said M. Megahed

The focus of the present work is on the design of plate structures for vibration energy harvesting from two closely-spaced modes of vibration. The work is motivated by the quest to design resonators that respond to variable-frequency sources of base motion. The geometry of two-dimensional structures, such as trapezoidal and V-shaped plates, is explored to obtain two closely-spaced harvestable vibration modes to scavenge energy across a broader bandwidth. To this end, an electromagnetic energy harvester in the form of a base excited plate is proposed. The plate carries tip magnets that oscillate past stationary coils to generate power from the first two modes of vibration. The plate dynamic behavior is governed by its geometry and placement of the magnets on its tip. An effort is made to optimize the system configuration so as to control the spacing between the resonance frequencies while efficiently harvesting energy from both modes. Findings of the present work are verified both numerically and experimentally.


Sign in / Sign up

Export Citation Format

Share Document