scholarly journals Multi-criteria analysis to compare multiple risks associated with management alternatives in planted forests

2020 ◽  
Vol 29 (2) ◽  
pp. e004
Author(s):  
Margot Régolini ◽  
Céline Meredieu ◽  
Hervé Jactel ◽  
Ander Arias-González ◽  
Manuela Branco ◽  
...  

Aim of study: Adaptation of silviculture in planted forest may help to mitigate damage due to biotic and abiotic hazards. However, compromises have to be found because it is not possible to minimize the risk from all hazards through application of a single forest management approach. The objective of this study was to improve a multi-criteria risk analysis (MCRA) method that makes it possible to rank forest management alternatives (FMAs) according to multiple risks. Material and Methods: We defined eight FMAs for maritime pine forests in France, Spain and Portugal. We used as the definition of risk the combination of hazard, susceptibility and exposure. Hazard level was estimated using archive data on occurrence and severity of damaging agents over the last few decades. Forest susceptibility to hazards was evaluated by experts who scored the effect on stand resistance of eleven silvicultural operations characterizing each FMA. Exposure was estimated as value at stake, which combined forest standing volume, simulated with forest growth models, and wood prices.Main Results: Using the PROMETHEE algorithm, we found that the overall ranking of FMAs was consistent across all countries, with short rotation plantations to produce pulpwood or energy wood were the least at risk. The ranking was mainly driven by forest values at stake. We found that by improving the accuracy of forest values exposed to damage, based on growth models and representative wood prices, the MCRA outcomes were more useful and realistic.Research highlights: Our methodology provides a relevant framework to design FMAs that would minimize risks while maintaining income.Keywords: Pinus pinaster; vulnerability; hazards; growth modelling; expert assessment; wood price; southwestern Europe.

1990 ◽  
Vol 66 (3) ◽  
pp. 271-280 ◽  
Author(s):  
J. P. Kimmins

The expected growth of the human population to about 11 billion sometime within the next rotation of most northern temperate forest crops will put greatly increased and varied demands on today's forested lands. Development of the timber resources on those lands that remain dedicated to timber production must be demonstrably sustainable if forest management is to help arrest rather than aggravate the continuing deterioration of the global environment, and if managed forests are to be a carbon sink rather than a carbon source with respect to the global "green-house effect". Unfortunately, the experience-based models traditionally used by foresters cannot make accurate predictions of future forest growth, yield, and carbon balance for the altered growing conditions that are expected to accompany this increase in human numbers. These tools are therefore unsuitable as a means of assessing the sustainability of site productivity under current or anticipated future forest management practices and the expected future soil, climate, and biotic conditions. It is time for foresters around the world to confront this issue and to develop and use more ecologically-sensitive, ecosystem-level stand growth and yield models.Knowledge-based, process-simulation stand growth models have many theoretical advantages, and are the only way of predicting future forest growth and carbon budgets on a particular site in the absence of accurate data on the past growth of forests on that site. However, such models have generally had significant practical limitations as an alternative to traditional forest yield models. They have either been too simple, or, if sufficiently complex, have had unacceptably large calibration data requirements, which has limited their portability. This has restricted most process-based simulation models to research and educational applications.An alternative approach which combines both the experience-based and the knowledge-based approaches offers a more practical alternative. The combination of "historical bioassay" and process-based modelling approaches into "hybrid simulation" stand models can provide a means by which to rank the most probable outcomes and the sustainability of alternative stand-level management strategies under a variety of possible future growing conditions.The accuracy of most forest management and forest economics models ultimately depends on the accuracy of stand-level growth models. As the world experiences increasing problems of air pollution (acid rain and the greenhouse effect), soil degradation, and deforestation, there is an urgent need for foresters to use ecosystem-level growth models that are sensitive to human-induced and naturally caused environmental changes. Use of such models is a necessary prerequisite to good stewardship of forest land and our legacy to future generations.


2016 ◽  
Vol 25 (2) ◽  
pp. eRC07 ◽  
Author(s):  
Susana Barreiro ◽  
João Rua ◽  
Margarida Tomé

Aim of the study: The existing stand level forest simulators available in Portugal were not developed with the aim of including up-to-date model versions and were limited in terms of accounting for forest management. The simulators’ platform, sIMfLOR was recently created to implement different growth models with a common philosophy. The objective was developing one easily-updatable, user-friendly, forest management and climate change sensitive simulator capable of projecting growth for the main tree species in Portugal.Area of the study: Portugal.Material and methods: The new simulator was programmed in a modular form consisting of several modules. The growth module integrates different forest growth and yield models (empirical and process-based) for the main wood production tree species in Portugal (eucalypt, umbrella and maritime pines); whereas the management module drives the growth projections along the planning horizon according to a range of forest management approaches and climate (at present only available for eucalypt).Main results: The main result is the StandsSIM-MD Management Driven simulator that overcomes the limitations of the existing stand level simulators. It is a step forward when compared to the models currently available in the sIMfLOR platform covering more tree species, stand structures and stand compositions. It is focused on end-users and it is based on similar concepts regarding the generation of required inputs and generated outputs.Research highlights:-          Forest Management Driven simulations approach-          Multiple Prescriptions-Per-Stand functionality-          StandsSIM-MD can be used to support landowners decisions on stand forest management-          StandsSIM-MD simulations at regional level can be combined with optimization routinesKeywords: Forest simulator, Forest Management Approaches; StandsSIM-MD; forest management.


2021 ◽  
pp. 521-543
Author(s):  
Christoforos Pappas ◽  
Nicolas Bélanger ◽  
Yves Bergeron ◽  
Olivier Blarquez ◽  
Han Y. H. Chen ◽  
...  

AbstractMonitoring of forest response to gradual environmental changes or abrupt disturbances provides insights into how forested ecosystems operate and allows for quantification of forest health. In this chapter, we provide an overview of Smartforests Canada, a national-scale research network consisting of regional investigators who support a wealth of existing and new monitoring sites. The objectives of Smartforests are threefold: (1) establish and coordinate a network of high-precision monitoring plots across a 4400 km gradient of environmental and forest conditions, (2) synthesize the collected multivariate observations to examine the effects of global changes on complex above- and belowground forest dynamics and resilience, and (3) analyze the collected data to guide the development of the next-generation forest growth models and inform policy-makers on best forest management and adaptation strategies. We present the methodological framework implemented in Smartforests to fulfill the aforementioned objectives. We then use an example from a temperate hardwood Smartforests site in Quebec to illustrate our approach for climate-smart forestry. We conclude by discussing how information from the Smartforests network can be integrated with existing data streams, from within Canada and abroad, guiding forest management and the development of climate change adaptation strategies.


2019 ◽  
Vol 11 (12) ◽  
pp. 3477
Author(s):  
Richard Yao ◽  
David Palmer ◽  
Barbara Hock ◽  
Duncan Harrison ◽  
Tim Payn ◽  
...  

Planted forest ecosystems provide a wide range of goods and services such as timber, carbon sequestration, and avoided erosion. However, only ecosystem services with market values (e.g., timber) are usually represented in decision making while those with non-market values (e.g., avoided erosion) that are difficult to quantify are often ignored. A spatial economic tool, the Forest Investment Framework (FIF), integrates data from forest growth models with spatial, biophysical, and economic data, to quantify the broader value of planted forests and to represent non-market values in sustainable forest management. In this paper, we have tested the applicability of FIF in three types of case studies: assessment of afforestation feasibility, regional economic analyses, and ecosystem service assessment. This study provides evidence that a spatial economic tool that quantifies the economic, environmental, and social values of the planted forest ecosystem is valuable in informing land management decisions for maintaining and enhancing the provision of market and non-market ecosystem services to society.


2021 ◽  
pp. 74-88
Author(s):  
Keshav Tyagi ◽  
Manoj Kumar ◽  
Sweta Nisha Phukon ◽  
Abhishek Ranjan ◽  
Pavan Kumar ◽  
...  

2015 ◽  
Vol 45 (5) ◽  
pp. 529-539 ◽  
Author(s):  
André Robitaille ◽  
Jean-Pierre Saucier ◽  
Michel Chabot ◽  
Damien Côté ◽  
Catherine Boudreault

Constraints of the physical environment affect forest growth and forest operations. At a local scale, these constraints are generally considered during forest operations. At regional or continental scales, they are often integrated to larger assessments of the potential for a given land unit to be managed. In this study, we propose an approach to analyze the integration of physical-environment constraints in forest management activities at the regional scale (482 000 km2). The land features that pose constraints to forest management (i.e., hydromorphic organic deposits, dead-ice moraines, washed till, glacial block fields, talus, and active aeolian deposits, slopes > 40%) were evaluated within 1114 land districts. To distinguish land districts that can be suitably managed from those where constraints are too important for sustainable timber production, we carried out a sensitivity analysis of physical constraints for the 1114 land districts. After analysis of two portions of the study area under management, a land district was considered suitable for management when more than 20% of its land area consists of features imposing few constraints or, for mountain-type relief districts, when more than 40% of the land area consists of features imposing few constraints. These cutoff values were defined by expert opinion, based on sensitivity analyses performed on the entire study area, on analyses of two different sectors with different types of constraints and on a strong understanding of the study area. Our results show that land districts where the physical environment posed significant constraints covered 7.5% of the study area (36 000 km2). This study shows that doing an a priori classification of land units based on permanent environmental features could facilitate the identification of areas that are not suitable for forest management activities.


2015 ◽  
Vol 313 ◽  
pp. 276-292 ◽  
Author(s):  
Hans Pretzsch ◽  
David I. Forrester ◽  
Thomas Rötzer

Water ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2301 ◽  
Author(s):  
Yang ◽  
Choi ◽  
Lim

Forests and water are closely related to each other. Thus, forest management is crucial for the sustainable clean water supply. Forest thinning is one of the fundamental forest management practices, as it can change runoff by controlling the density of trees. In this study, the effect of forest thinning on long-term runoff changes was evaluated, based on the long-term rainfall-runoff data of a coniferous plantation forest catchment in Korea. From the double mass curve and Pettitt’s test, a statistically significant increase in runoff rates was identified. A simple linear regression model of the double mass curve can successfully quantify the net effect of forest thinning on the runoff increase. Furthermore, it was also confirmed that forest thinning does not significantly increase the risk of flooding. About ten years after forest thinning, crown closure rates of the coniferous plantation forest reached a level similar to the pre-thinning period, and runoff rates returned to the pre-thinning level, due to forest growth. As a result of this study, a proposed direction for Korea’s forest policy for water resource management is presented for the future.


Sign in / Sign up

Export Citation Format

Share Document