scholarly journals Recent very severe tropical cyclones over the Bay of Bengal : Analysis with satellite data

MAUSAM ◽  
2021 ◽  
Vol 57 (1) ◽  
pp. 37-46
Author(s):  
B. R. LOE ◽  
B. L. VERMA ◽  
R. K. GIRI ◽  
S. BALI ◽  
L. R. MEENA

lkj & bl 'kks/k&i= esa caxky dh [kkM+h ds m".kdfVca/kh; pØokrksa dh rhozrk dk vkdyu vkSj pØokr ds ekxZ dk iwokZuqeku yxkus esa mixzg ds vk¡dM+ksa ls cus izHkko dks n’kkZ;k x;k gSA bl 'kks/k&i= esa ys[kdksa us pØokrh rwQkuksa ds ekxZ dk] pØokr ds cuus dk vkSj pØokr dh xfrfof/k;ksa dk irk yxkus esa mixzg ds vk¡dM+ksa ds mi;ksx dks vuqdwy cukus esa lqnwj laosnh rduhdksa dh gky gh esa feyh lQyrk vkSj mlds mi;ksx dh izxfr ij fo’ks"k :Ik ls /;ku dsfUnzr fd;k gSA nks pØokrksa dk fo’ys"k.k fd;k x;k gS & 16 ls 19 ebZ 2004 esa E;kaekj esa vk;k izpaM pØokrh rwQku vkSj nwljk 26 ls 31 vDrwcj 1999 esa mM+hlk esa vk;k pØokrA pØokrh rwQkuksa ds cuus vkSj muds vkxs c<+us ds iwokZuqeku esa vfr mPp foHksnu jsfM;ksehVj ¼oh- ,p- vkj- vkj-½ vk¡dM+ksa] LdsVªksehVj iouksa vkSj cfgxkZeh nh?kZrjax fofdj.k ¼vks- ,y- vkj-½ ds pØokrksa ds vkl&ikl Ñf=e o.kZ esa n’kkZ, x, vk¡dM+ksa dk mi;ksx djrh gqbZ mixzg ij vk/kkfjr rduhd cgqr vf/kd mi;ksxh ikbZ xbZ gSA bl v/;;u esa caxky dh [kkM+h esa vk, nks pØokrksa ds cuus vkSj muds vkxs c<+us dh vlekurk dks fo’ks"k :Ik ls crk;k x;k gSA This paper shows the impact made by the satellite data in the intensity estimation and track prediction of tropical cyclones of Bay of Bengal. The authors in this paper have focused on the recent accomplishment and advances in the remote sensing techniques to optimize the use of satellite data in tracking, formation and movement of cyclonic storms. Two cyclones - firstly the Myanmar severe cyclonic storm of 16 to 19 May 2004 and secondly the          26 – 31 October 1999 Orissa cyclone have been analysed. Satellite based technique using Very High Resolution Radiometer (VHRR) data, scatterometer winds and outgoing long wave radiation (OLR) data in pseudo color around the cyclones have been found to be more useful in predicting formation and movement of cyclonic storms. The present study has significantly brought out the difference in formation and movement of the two cyclones formed over the Bay of Bengal.

2019 ◽  
Vol 124 (1) ◽  
pp. 555-576 ◽  
Author(s):  
Haijun Ye ◽  
Jinyu Sheng ◽  
Danling Tang ◽  
Evgeny Morozov ◽  
Muhsan Ali Kalhoro ◽  
...  

Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2975
Author(s):  
Huabing Xu ◽  
Rongzhen Yu ◽  
Danling Tang ◽  
Yupeng Liu ◽  
Sufen Wang ◽  
...  

This paper uses the Argo sea surface salinity (SSSArgo) before and after the passage of 25 tropical cyclones (TCs) in the Bay of Bengal from 2015 to 2019 to evaluate the sea surface salinity (SSS) of the Soil Moisture Active Passive (SMAP) remote sensing satellite (SSSSMAP). First, SSSArgo data were used to evaluate the accuracy of the 8-day SMAP SSS data, and the correlations and biases between SSSSMAP and SSSArgo were calculated. The results show good correlations between SSSSMAP and SSSArgo before and after TCs (before: SSSSMAP = 1.09SSSArgo−3.08 (R2 = 0.69); after: SSSSMAP = 1.11SSSArgo−3.61 (R2 = 0.65)). A stronger negative bias (−0.23) and larger root-mean-square error (RMSE, 0.95) between the SSSSMAP and SSSArgo were observed before the passage of 25 TCs, which were compared to the bias (−0.13) and RMSE (0.75) after the passage of 25 TCs. Then, two specific TCs were selected from 25 TCs to analyze the impact of TCs on the SSS. The results show the significant SSS increase up to the maximum 5.92 psu after TC Kyant (2016), which was mainly owing to vertical mixing and strong Ekman pumping caused by TC and high-salinity waters in the deep layer that were transported to the sea surface. The SSSSMAP agreed well with SSSArgo in both coastal and offshore waters before and after TC Roanu (2016) and TC Kyant (2016) in the Bay of Bengal.


2016 ◽  
Vol 73 (9) ◽  
pp. 3345-3370 ◽  
Author(s):  
Konstantinos Menelaou ◽  
David A. Schecter ◽  
M. K. Yau

Abstract Intense atmospheric vortices such as tropical cyclones experience various asymmetric instabilities during their life cycles. This study investigates how vortex properties and ambient conditions determine the relative importance of different mechanisms that can simultaneously influence the growth of an asymmetric perturbation. The focus is on three-dimensional disturbances of barotropic vortices with nonmonotonic radial distributions of potential vorticity. The primary modes of instability are examined for Rossby numbers between 10 and 100 and Froude numbers in the broad neighborhood of unity. This parameter regime is deemed appropriate for tropical cyclone perturbations with vertical length scales ranging from the depth of the vortex to moderately smaller scales. At relatively small Froude numbers, the main cause of instability inferred from analysis typically involves the interaction of vortex Rossby waves with each other and/or critical-layer potential vorticity perturbations. As the Froude number increases from its lower bound, the main cause of instability transitions to inertia–gravity wave radiation. In some cases, the transition occurs abruptly at a critical point where a mode whose growth is driven almost entirely by radiation suddenly becomes dominant. In other cases, the transition is gradual and less direct as the fastest-growing mode continuously changes its structure. Examination of the angular pseudomomentum budget helps quantify the impact of radiation. The radiation-driven instabilities examined herein are shown to be quite fast and potentially relevant to real-world tropical cyclones. Their sensitivities to parameterized moisture and outer vorticity skirts are briefly addressed.


MAUSAM ◽  
2022 ◽  
Vol 64 (1) ◽  
pp. 105-116
Author(s):  
T.N. TNJHA ◽  
M. MOHAPATRA ◽  
B.K. BANDYOPADHYAY

caxky dh [kkM+h esa o"kZ 2008&2010 esa ,Q- Mh- ih- vof/k ¼15 vDrwcj ls 30 uoEcj½ ds nkSjku vk, ik¡p pØokrksa ds lw{e rjaxh; es?k fcEckofy;ksa rFkk 85 fxxkgV~tZ vko`fÙk esa izkIr fd, x, mRiknksa dh tk¡p dh xbZ gS ftlls rkieku nhfIr] rkieku nhfIr esa vfu;ferrk] dsUnz dk LFkku] lrg ij vuojr cgus okyk vf/kdre iou ¼,e- ,l- MCY;w-½ rFkk  pØokrksa ds fHkUu&fHkUu fLFkfr;ksa esa muds rhozhdj.k ls lacaf/kr  djdksa tSls% vonkc ¼Mh-½] xgu vonkc ¼Mh- Mh-½] pØokrh; rwQku ¼lh- ,l-½] rhoz pØokrh; rwQku ¼,l-lh-,l-½] vfr rhoz pØokrh; rwQku ¼oh-,l-lh-,l-½ vkfn dk vkdfyr dsUnzh; nkc ¼bZ- lh- ih-½ dk vkdyu fd;k tk ldsA izf{kr fd, x, nhfIr rkieku vfu;ferrkvksa dh rqyuk lS)kafrd :i ls bZ-lh-ih- ds csLV VªSd vkdyu ij vk/kkfjr  nhfIr rkieku vfu;ferrk ,oa bu pØokrksa ds ckgjh nkc ds lkFk Hkh dh xbZ gSA dsUnz ds LFkku] bZ-lh-ih- ,oa lw{erajxh; fcEckoyh ds vk/kkj ij vkdfyr ,e- ,l- MCY;w- dh rqyuk csLV VªSd ,oa Hkkjr ekSle foKku foHkkx ds Mh- oksjkWd  ds vkdyu ls dh xbZ gS vkSj mldk fo’ys"k.k fd;k x;k gSA   pØokrh; fo{kksHk ¼lh- Mh-½ ds dsUnz ds LFkku esa varZ tSlkfd lw{erjaxh fcEckofy;ksa rFkk csLV VªSd vkdyu ds }kjk vkdfyr fd;k x;k gS] fo{kksHkksa ds rhozhdj.k ds lkFk&lkFk de gksrk tkrk gS vkSj vonkc ¼Mh-½ dh fLFkfr esa yxHkx 25 fd-eh- ls vfr rhoz pØokrh; rwQku ¼oh-,l-lh-,l-½ dh fLFkfr esa 18 fd- eh ds chp cnyrk jgrk gSA tcfd ;g varj Mh oksjkWd  ds vkdyu ls dkQh vf/kd gSA lw{erjaxh; vkdyuksa ij vk/kkfjr ,e- ,l- MCY;w- vkdyu oh-,l- lh- ,l- ds nkSjku csLV VªSd vkdyuksa ls yxHkx 28 ukWV~l vf/kd vkdfyr fd;k x;k gS vkSj vonkc ¼Mh-½@pØokrh; rwQku ¼lh-,l-½@rhoz pØokrh; rwQku ¼,l- lh- ,l-½ dh fLFkfr esa ;g 6&8 ukWV~l vkdfyr fd;k x;k gSA csLV VSªd vkdyuksa ls lkisf{kd varj dks ns[kus ls irk pyk gS fd lh-,l- vkSj ,l-lh- dh fLFkfr esa lw{e rajx esa ,e-,l-MCY;w- yxHkx 12&15 izfr’kr vkSj oh-,l-lh-,l- dh fLFkfr esa yxHkx 30 izfr’kr vf/kd vkdfyr gqvk gS tcfd Mh- oksjkWd dk ,e- ,l- MCY;w- vkdyu lh- ,l-] ,l- lh- ,l- vkSj oh- ,l- lh- ,l- dh fLFkfr;ksa esa 15&18 izfr’kr de gks x;k gSA caxky dh [kkM+h ds Åij 230 dsfYou dk nhfIr rkieku vonkc ds cuus ds fy, vuqdwy gksrk gS] 250 dsfYou dk rkieku bldks pØokrh rwQku esa 260 dsfYou rhoz pØokrh rwQku esa vkSj 270 dsfYou vfr izpaM+ pØokrh rwQku esa cny nsrk gSA nhfIr rkieku ds nsgyheku ¼FkszlksYM osY;w½ ds vfHkKku ¼fMVSD’ku½ ls bl iz.kkyh ds rhoz gksus dk iwokZuqeku nsus ds fy, iz;kIr vfxze le; fey ldrk gSA blh izdkj nhfIr rkieku folaxfr 3 dsfYou ls vf/kd gksus ij pØokrh; rwQku rhoz  pØokrh; rwQku esa cny tkrk gS vkSj 8 dsfYou dk rkieku bls caxky dh [kkM+h esa vfr izpaM pØokrh; rwQku ds :i esa cny nsrk gSA Microwave cloud imageries and derived products in the frequency of 85 GHz have been examined for five cyclones that occurred during FDP period (15 October- 30 November) of 2008-2010 over the Bay of Bengal to estimate the brightness temperature, brightness temperature anomaly, location of centre, maximum sustained wind (MSW) at surface level and estimated central pressure (ECP) associated with cyclones in their different stages of intensification like depression (D), deep depression (DD), cyclonic storm (CS), severe cyclonic storm (SCS), very severe cyclonic storm (VSCS), etc. Also the observed brightness temperature anomalies are compared with theoretically derived brightness temperature anomalies based on the best track estimates of ECP and outermost pressure for these cyclones.  The location of centre, ECP and MSW based on microwave imagery estimates have been compared with those available from the best track  and Dvorak’s estimates of India Meteorological Department and analyzed. The difference in location of the centre of cyclonic disturbance (CD) as estimated by microwave imageries and best track estimates decreases with intensification of the  disturbances and varies from about 25 km in depression (D) stage to 18 km in VSCS stage whereas the difference is significantly higher in case of Dvorak estimate compared to best track estimate. The MSW based on microwave estimates is higher than that of best track estimates by about 28 knots during VSCS and 6-8 knots during D, CS, SCS stage. Considering relative difference with respect to best track estimates, the MSW is overestimated in microwave by about 12-15% in case of CS and SCS stage and by about 30% in VSCS stage while Dvorak’s MSW overestimation reduced to 15-18% during CS, SCS and VSCS stages. Brightness temperature of the order of 230 K is favourable for genesis (formation of D), 250K for its intensification into CS, 260 K for intensification into SCS and 270K for its further intensification into VSCS stage over the Bay of Bengal. Detection of threshold value of brightness temperature may provide adequate lead time to forecast intensification of the system. Similarly, when brightness temperature anomaly exceeds 3K, CS intensify into SCS and 8K, it intensifies into a VSCS over Bay of Bengal.


2011 ◽  
Vol 8 (3) ◽  
pp. 717-722
Author(s):  
Baghdad Science Journal

Spot panchromatic satellite image had been employed to study and know the difference Between ground and satellite data( DN ,its values varies from 0-255) where it is necessary to convert these DN values to absolute radiance values through special equations ,later it converted to spectral reflectance values .In this study a monitoring of the environmental effect resulted from throwing the sewage drainages pollutants (industrial and home) into the Tigris river water in Mosul, was achieved, which have an effect mostly on physical characters specially color and turbidity which lead to the variation in Spectral Reflectance of the river water ,and it could be detected by using many remote sensing techniques. The contaminated areas within the water of the river which represents the difference in the reflectance values were isolated and signed, as well as the field estimations, which had been done by using spectrometer device, which gave an acceptable agreement with satellite data considering time difference between these estimations. satellite imagery analysis program ERDAS version 8.4 was used to determine the values of Spectral Reflectance in the satellite image. A geographic information systems through the ARC INFO has been used to draw photo map of the study area determined it specific sites of measuring the Reflectance, which represent areas that are near the sources of pollution and the other various regions along the river.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sourav Sil ◽  
Avijit Gangopadhyay ◽  
Glen Gawarkiewicz ◽  
Saikat Pramanik

AbstractIn recent years, the seasonal patterns of Tropical Cyclones (TC) in the Bay of Bengal have been shifting. While tropical depressions have been common in March–May (spring), they typically have been relatively weaker than the TCs during October–December. Here we show that the spatial pattern of recent warming trends during the last two decades in the southwestern Bay has allowed for stronger springtime pre-monsoon cyclones such as Amphan (May 2020, Super Cyclone) and Fani (April–May 2019, Extremely Severe Cyclone). The tracks of the pre-monsoon cyclones shifted westward, concurrent with an increasing rate of warming. This shift allowed both Fani and Amphan tracks to cross the northeastward warm Western Boundary Current (WBC) and associated warm anti-cyclonic eddies, while the weaker Viyaru (April 2013, Cyclonic Storm) did not interact with the WBC. A quantitative model linking the available along-track heat potential to cyclone’s intensity is developed to understand the impact of the WBC on cyclone intensification. The influence of the warming WBC and associated anti-cyclonic eddies will likely result in much stronger springtime TCs becoming relatively common in the future.


2016 ◽  
Vol 37 (13) ◽  
pp. 3086-3103 ◽  
Author(s):  
M. Dhanya ◽  
Deepak Gopalakrishnan ◽  
A. Chandrasekar ◽  
Sanjeev Kumar Singh ◽  
V.S. Prasad

2013 ◽  
Vol 43 (1) ◽  
pp. 205-221 ◽  
Author(s):  
Nicolas C. Jourdain ◽  
Matthieu Lengaigne ◽  
Jérome Vialard ◽  
Gurvan Madec ◽  
Christophe E. Menkes ◽  
...  

Abstract Tropical cyclones drive intense ocean vertical mixing that explains most of the surface cooling observed in their wake (the “cold wake”). In this paper, the authors investigate the influence of cyclonic rainfall on the cold wake at a global scale over the 2002–09 period. For each cyclone, the cold wake intensity and accumulated rainfall are obtained from satellite data and precyclone oceanic stratification from the Global Eddy-Permitting Ocean Reanalysis (GLORYS2). The impact of precipitation on the cold wake is estimated by assuming that cooling is entirely due to vertical mixing and that an extra amount of energy (corresponding to the energy used to mix the rain layer into the ocean) would be available for mixing the ocean column in the hypothetical case with no rain. The positive buoyancy flux of rainfall reduces the mixed layer depth after the cyclone passage, hence reducing cold water entrainment. The resulting reduction in cold wake amplitude is generally small (median of 0.07 K for a median 1 K cold wake) but not negligible (&gt;19% for 10% of the cases). Despite similar cyclonic rainfall, the effect of rain on the cold wake is strongest in the Arabian Sea and weak in the Bay of Bengal. An analytical approach with a linearly stratified ocean allows attributing this difference to the presence of barrier layers in the Bay of Bengal. The authors also show that the cold wake is generally a “salty wake” because entrainment of subsurface saltier water overwhelms the dilution effect of rainfall. Finally, rainfall temperature has a negligible influence on the cold wake.


MAUSAM ◽  
2021 ◽  
Vol 57 (4) ◽  
pp. 609-618
Author(s):  
R. SURESH ◽  
S. K. KUNDU ◽  
A. K. BHATNAGAR ◽  
R. C. BHATIA

lkj &,d m".kdfVca/kh; vonkc ds thou pØ ds vkadMs+ rFkk nks m".kdfVca/kh; pØokrh rwQkuksa ds o"kZ 2002&03 dh vof/k ds vkadMs+ mPp Vh- vks- oh- ,l- ¼,- Vh- vks- oh- ,l-½ /kzqod{kh; mixzgksa ,u- vks- ,- , 15 rFkk 16] ftuesa mPp lw{e rjaxh; ifjKkiu bdkbZ ¼,- ,e- ,l- ;w½ yxh gqbZ gaS ls izkIr fd, x, gSa ftudk fo’ys"k.k bu rwQkuksa ds ekxZ dk iwokZuqeku djus ds fy, fd;k x;k gSA bu ekSle fo{kksHkksa ds 700&400 gsDVkikLdy ¼gs-ik-½ Lrj esa e/; {kksHkeaMyh; m".krk e/; Lrjh ckfgokZg ds dkj.k gksrh gS tks rwQku ds 200&700 fd-eh- vkxs rd foLrkfjr gksrh gS rFkk fo{kksHkksa dh xfr’khyrk dk djhc 6 ls 24 ?kaVs igys iwokZuqeku djus esa iwoZ ladsrd dk dk;Z djrh gSA ;g fo{kksHk yxHkx mlh v{k dks vuqxeu djrk gS tks e/; {kksHkeaMy esa foLrkfjr ¼vkxs c<s+ gq,½ ftg~okdkj m".k {ks= dks dsUnz ls tksM+rk gSA e/;e rhozrk okys nks HkweaMyh; pØokrksa dh fLFkfr esa tc 7º ls 13º lsfYl;l rkieku dk m"edksj Åijh {kksHkeaMyh; Lrj ¼250&200 gs-ik-½ ds djhc dsafnzr jgk ml le; vonkc dh fLFkfr esa fdlh fo’ks"k m".krk dk irk ugha      pyk gSA  Advanced TOVS (ATOVS), comprising the Advanced Microwave Sounding Unit (AMSU), data obtained from polar orbiting satellites NOAA 15 and 16 during the life cycle of a tropical depression and two tropical cyclonic storms during 2002-03 have been analysed to predict the track of these disturbances.  The mid-tropospheric warming due to altostratus outflow from these weather disturbances in the layer 700 – 400 hPa which protrudes about  200 -700 km ahead the storm acts as a pre-cursor to predict the movement of the disturbances with a lead time of about      6 to 24 hours. The disturbance almost follows the axis connecting the centre with the warm tongue that protrudes ahead of  the disturbance in the mid-troposphere. While warm core of 7 to 13° C is centered around the upper tropospheric level (250 – 200 hPa) in the case the two moderate intensity tropical cyclones, no significant warmness could be seen in the depression stage.   


Sign in / Sign up

Export Citation Format

Share Document