scholarly journals Characteristics of movement of low level clouds associated with onset / wet spells of northeast monsoon of Indian sub-continent as derived from high resolution INSAT OLR data

MAUSAM ◽  
2021 ◽  
Vol 67 (2) ◽  
pp. 357-376
Author(s):  
B. AMUDHA ◽  
Y. E. A. RAJ ◽  
R. ASOKAN

Characteristics of the northeast monsoon (NEM) have been studied utilising the outgoing long wave radiation (OLR) data derived over the north Indian Ocean and south peninsular India (SPI) from the series of Indian geostationary satellites. The contrasting feature of movement of the equatorial cloud zone from southeast to northwest direction during the onset phase of NEM has been reiterated using 1° × 1° gridded high resolution OLR data for the period 2000-2012.  Presence of OLR values less than 180 Wm-2 over a large part of coastal Tamil Nadu on the date of onset and the simultaneous commencement of rainfall with clouding approaching SPI from southeast is clear from the study of superposed epoch analysis of the data. Triad means of OLR also substantiate this inference. During active spells of NEM which succeed prolonged dry spells, replication of the south to north movement of clouding by the OLR contours and the plausible reasons for such a movement have been brought out. The active monsoon situation existing over Sri Lankan region during the withdrawal phase of NEM over SPI is demonstrated with the depiction of the movement of OLR contours less than 230 Wm-2 over the region.  

MAUSAM ◽  
2021 ◽  
Vol 67 (3) ◽  
pp. 559-570
Author(s):  
B. AMUDHA ◽  
Y. E. A. RAJ ◽  
R. ASOKAN

South Peninsular India (SPI) benefits largely from the rainfall (RF) realised during the North East Monsoon (NEM) season that prevails from October to December spilling over to January in some of the years.  Salient aspects of clouding / RF over SPI associated with 13 NEM seasons from 2000-01 to 2012-13 have been analysed using estimates of Outgoing Long wave Radiation (OLR) at 1° × 1° resolution derived from the radiance observations in the infra-red channel onboard the geostationary operational Indian satellite (INSAT) radiometers. OLR is considered as a proxy indicator for convective activity with the value of 230 Wm-2  as the threshold for RF occurrence. Year-to-year mean OLR patterns of the NEM season along with the latitudinal and longitudinal variabilities were analysed for dry, light and active phases of NEM. Based on rigorous analysis of INSAT OLR data for the above 13 years, it has been shown that during the active phase of NEM, Coastal Tamil Nadu (CTN) receives more RF while over BoB the RF is lower and decreases sharply over interior Tamil Nadu. This is a reiteration of a similar result from an earlier study based on 3 years (1996-98) OLR data from polar orbiting NOAA satellites. The spatial variation in OLR over the latitudes of 10.5, 12.5 and 14.5° N along  the longitudes of 75.5-85.5° E  has revealed the feature that  north of 10.5° N, values of OLR are higher with decrease in RF from south to north.  During dry phase of NEM in December and January, higher OLR is observed over northern latitudes of BoB than southern latitudes. It has been comprehended that in the southern latitudes of BoB, where higher sea surface temperatures (SST) are prevalent, more moisture is generated and pumped in to upper levels of the atmosphere leading to lower values of OLR compared to northern latitudes.  


MAUSAM ◽  
2021 ◽  
Vol 58 (1) ◽  
pp. 33-48
Author(s):  
Y. E. A. RAJ ◽  
R. ASOKAN ◽  
P. V. REVIKUMAR

ABSTRACT. The northeast monsoon sets in over southern parts of peninsular India after the retreat of southwest monsoon and in association with the southward movement of equatorial trough. The INSAT satellite imageries scrutinised during the past several years revealed that the cloud bands at the time of northeast monsoon onset moved from south Bay into the southern peninsula, a feature that contrasts with the north to south movement of the equatorial trough. The paper investigates this aspect based on a dataset of lower level upper winds of the peninsula, rainfall data and INSAT OLR data for the 20 year period 1981–2000. The super epoch profiles of zonal winds, latitudinal position of equatorial trough with reference to northeast monsoon onset dates have been derived and studied. The region with OLR values less than 230 W/m2 was defined as the equatorial cloud zone and the movement of northern limit of ECZ was studied based on the normal pentad OLR data and also the superposed epoch profiles. From these analysis it has been established that at the time of northeast monsoon onset, the wind based equatorial trough moves south of Comorin whereas the cloud zone in the Bay of Bengal moves from south to north. Reasons for the occurrence of such a contrasting feature have been ascribed to features such as decreasing strength of lower level easterlies from north to south over coastal Tamil Nadu, reversal of temperature gradient between Chennai and Thiruvananthapuram at the time of onset and the dynamics of 40-day oscillation. The northeast monsoon activity over coastal Tamil Nadu has been found to be negatively correlated with the low level zonal winds over the coast, the degree of relation decreasing from north to south and also from October to December. Based on the results derived in the study and also the other known features of northeast monsoon a thematic model of northeast monsoon onset listing the events that precede and succeed the onset has been postulated.


MAUSAM ◽  
2021 ◽  
Vol 50 (4) ◽  
pp. 343-354
Author(s):  
U. S. DE ◽  
R. K. MUKHOPADHYAY

Northeast monsoon precipitation data of 5 meteorological sub-divisions in India, spanning the period 1901-97, were analysed to identify the effect of ENSO/Anti ENSO events on the rainfall over southern peninsular India. ENSO/Anti ENSO years were selected on the basis of seasonal Southern Oscillation Index (SOI). The analysis revealed that ENSO years were generally associated with enhanced northeast monsoon precipitation while there was reduced precipitation during Anti ENSO years, the reduction in Anti ENSO years being significant for Tamil Nadu (at 0.1% level), for Kerala (at 1% level) and for South Peninsular India (at 1% level). Of 22 ENSO years, 18 years were found to be either flood or wet years, while 11 years out of 15 Anti ENSO years were found to be either drought or dry years.   During ENSO years, the Sea Surface Temperature (SST) anomalies both over the Arabian Sea and the Bay of Bengal were positive during the months October to December, while the reverse was the case during Anti ENSO years. A concurrent significant positive correlation was noted between SST over east central Arabian Sea and the north central Bay regions and northeast monsoon rainfall.   The cyclonic systems were observed to form relatively at lower latitudes during ENSO years as compared to those during Anti ENSO years. These systems were also found to move in a more westerly direction, hit Tamil Nadu and south Andhra coast, thus giving more rain over peninsula during ENSO years. The ridge line at 200 hPa level during ENSO years was located 3° south as compared to its location during Anti ENSO years.


MAUSAM ◽  
2021 ◽  
Vol 49 (3) ◽  
pp. 309-320
Author(s):  
Y. E. A. RAJ

The withdrawal dates of northeast monsoon over coastal Tamil Nadu for the 90-year period (1901-90) have been objectively derived. The methodology of determination was generally based on an index based on the spatial distribution of daily rainfall over stations of coastal Tamil Nadu, over a 5-day pentad for the six month period, September- February. The normal withdrawal date thus obtained was 27 December with a standard deviation of 13.6 days and range 23 November-28 January. The duration of northeast monsoon was distributed with mean 67.5 days, standard deviation 14.9 days and range 26-102 days. During 36.7 % of years the withdrawal spilled over to January of next year. The daily normal rainfall and its difference filter have been discussed with reference to the normal date of withdrawal. The average decrease of rainfall at the time of withdrawal has been derived by application of superposed epoch analysis. It has further been shown that during years when the withdrawal took place in January the intensity of northeast monsoon prior to withdrawal was as intense as in years when withdrawal occurred in December. A few cases of northeast monsoon withdrawal have been illustrated with diagrams. As no definite dynamic or thermodynamic features could be uniquely identified which are associated with the withdrawal, this technique is basically statistical, considering the behaviour of the daily normal rainfall as the sole criterion. Unique thermodynamic and dynamic features are not identifiable which are associated with the withdrawal of northeast monsoon over coastal Tamilnadu.


MAUSAM ◽  
2021 ◽  
Vol 63 (1) ◽  
pp. 17-28
Author(s):  
S. BALACHANDRAN ◽  
B. GEETHA

The Northeast monsoon season of October to December (OND) is the primary season of cyclonic activity over the North Indian Ocean (NIO). The mean number of days of cyclonic activity over NIO during this season is about 20 days. In the present study, statistical prediction for seasonal cyclonic activity over the North Indian Ocean during the cyclone season of October to December is attempted using well known climate indices and regional circulation features during the recent 30 years of 1971-2000.Potential predictors are identified using correlation analysis and optimum numbers of predictors are chosen using screening regression technique. A qualitative prediction for number of Cyclonic Disturbance (CD) days is attempted by analysing the conditional means of the number of CD days during OND over NIO for different intervals of each predictor based on the 30 year data of 1971-2000. Predictions and their validations for the subsequent test period of 2001 to 2009, based on this scheme, are discussed. An attempt for quantitative prediction is also made by developing a multiple regression model for prediction of number of CD days over the NIO during OND using the same predictors. The regression model accounts for 70% of the inter annual variance. The root mean square error of estimate is 5 days and the bias error is 0.36 days. The regression model is cross validated by Jackknife method for each individual year using the data of 29 years from the sample excluding the year under consideration. The model is also tested for independent dataset for the years 2001 to 2009. Salient features of the model performance are discussed.


2015 ◽  
Vol 12 (10) ◽  
pp. 10389-10429
Author(s):  
K. Sunilkumar ◽  
T. Narayana Rao ◽  
S. Satheeshkumar

Abstract. This paper describes the establishment of a dense rain gauge network and small-scale variability in rain storms (both in space and time) over a complex hilly terrain in southeast peninsular India. Three years of high-resolution gauge measurements are used to evaluate 3 hourly rainfall and sub-daily variations of four widely used multisatellite precipitation estimates (MPEs). The network consists of 36 rain gauges arranged in a near-square grid area of 50 km × 50 km with an intergauge distance of ~ 10 km. Morphological features of rainfall in two principal monsoon seasons (southwest monsoon: SWM and northeast monsoon: NEM) show marked seasonal differences. The NEM rainfall exhibits significant spatial variability and most of the rainfall is associated with large-scale systems (in wet spells), whereas the contribution from small-scale systems is considerable in SWM. Rain storms with longer duration and copious rainfall are seen mostly in the western quadrants in SWM and northern quadrants in NEM, indicating complex spatial variability within the study region. The diurnal cycle also exhibits marked spatiotemporal variability with strong diurnal cycle at all the stations (except for 1) during the SWM and insignificant diurnal cycle at many stations during the NEM. On average, the diurnal amplitudes are a factor 2 larger in SWM than in NEM. The 24 h harmonic explains about 70 % of total variance in SWM and only ~ 30 % in NEM. The late night-mid night peak (20:00–02:00 LT) observed during the SWM is attributed to the propagating systems from the west coast during active monsoon spells. Correlograms with different temporal integrations of rainfall data (1, 3, 12, 24 h) show an increase in the spatial correlation with temporal integration, but the correlation remains nearly the same after 12 h of integration in both the monsoons. The 1 h resolution data shows the steepest reduction in correlation with intergauge distance and the correlation becomes insignificant after ~30 km in both monsoons. Evaluation of high-resolution rainfall estimates from various MPEs against the gauge rainfall indicates that all MPEs underestimate the weak and heavy rain. The MPEs exhibit good detection skills of rain at both 3 and 24 h resolutions, however, considerable improvement is observed at 24 h resolution. Among different MPEs, Climate Prediction Centre morphing technique (CMORPH) performs better at 3 hourly resolution in both monsoons. The performance of TRMM multisatellite precipitation analysis (TMPA) is much better at daily resolution than at 3 hourly, as evidenced by better statistical metrics than the other MPEs. All MPEs captured the basic shape of diurnal cycle and the amplitude quite well, but failed to reproduce the weak/insignificant diurnal cycle in NEM.


2011 ◽  
Vol 61 (2) ◽  
pp. 689-701 ◽  
Author(s):  
Satya Prakash ◽  
C. Mahesh ◽  
R. M. Gairola ◽  
P. K. Pal

Sign in / Sign up

Export Citation Format

Share Document