scholarly journals Associations between reproductive and carcass traits in Nellore

2015 ◽  
Vol 36 (6Supl2) ◽  
pp. 4423 ◽  
Author(s):  
Edson Junior Heitor de Paula ◽  
Elias Nunes Martins ◽  
Carlos Antônio Lopes de Oliveira ◽  
Cláudio De Ulhoa Magnabosco ◽  
Roberto Daniel Sainz ◽  
...  

<p>The objective of this study was to estimate the genetic parameters and (co)variance of Nellore animals and to characterize the associations between these characteristics for the following carcass traits: weight (W), longissimus muscle area (LMA), rump fat thickness (RF) and fat thickness between the 12th and 13th ribs obtained by ultrasound (BF); also, the following reproductive traits: age at first calving (AFC), first calving interval (FCI), scrotal circumference at 450 and 550 days of age (SC450 and SC550). The genetic parameters were estimated by a single-trait and two traits animal model using Bayesian inference. The model used for all of the features included the genetic random effect and age as covariate assuming a quadratic effect. Additionally, sex, month and year of birth and management of creation and environmental effects identified were included for the carcass traits. For AFC, FCI and SC450 and SC550, we considered only the month and year of birth. The heritability estimates for all of the traits were higher in the two traits analysis, except for AFC and FCI, which showed 0.75 and 0.29, respectively, similar values in the single trait analysis. The two traits analyses resulted in heritability estimates for a posteriori for the features W, LMA, BF, RF, SC450 and SC550 of 0.49, 0.66, 0.74, 0.68 0.66 and 0.74, respectively, suggesting the possibility of genetic gains during a short period of time. The genetic correlations between AFC and carcass traits measured by ultrasound were close to zero. A similar trend was found for AFC, SC450 and SC550 days, indicating that the selection for these traits does not promote changes in AFC. High genetic correlations (0.92, 0.93 and 0.94) were observed between the characteristics LMA and W, BF and RF, and SC450 and SC550, respectively.</p>

2015 ◽  
Vol 36 (6Supl2) ◽  
pp. 4423
Author(s):  
Edson Junior Heitor de Paula ◽  
Elias Nunes Martins ◽  
Carlos Antônio Lopes de Oliveira ◽  
Cláudio De Ulhoa Magnabosco ◽  
Roberto Daniel Sainz ◽  
...  

The objective of this study was to estimate the genetic parameters and (co)variance of Nellore animals and to characterize the associations between these characteristics for the following carcass traits: weight (W), longissimus muscle area (LMA), rump fat thickness (RF) and fat thickness between the 12th and 13th ribs obtained by ultrasound (BF); also, the following reproductive traits: age at first calving (AFC), first calving interval (FCI), scrotal circumference at 450 and 550 days of age (SC450 and SC550). The genetic parameters were estimated by a single-trait and two traits animal model using Bayesian inference. The model used for all of the features included the genetic random effect and age as covariate assuming a quadratic effect. Additionally, sex, month and year of birth and management of creation and environmental effects identified were included for the carcass traits. For AFC, FCI and SC450 and SC550, we considered only the month and year of birth. The heritability estimates for all of the traits were higher in the two traits analysis, except for AFC and FCI, which showed 0.75 and 0.29, respectively, similar values in the single trait analysis. The two traits analyses resulted in heritability estimates for a posteriori for the features W, LMA, BF, RF, SC450 and SC550 of 0.49, 0.66, 0.74, 0.68 0.66 and 0.74, respectively, suggesting the possibility of genetic gains during a short period of time. The genetic correlations between AFC and carcass traits measured by ultrasound were close to zero. A similar trend was found for AFC, SC450 and SC550 days, indicating that the selection for these traits does not promote changes in AFC. High genetic correlations (0.92, 0.93 and 0.94) were observed between the characteristics LMA and W, BF and RF, and SC450 and SC550, respectively.


Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1425
Author(s):  
Masoumeh Naserkheil ◽  
Deuk-Hwan Lee ◽  
Hong-Sik Kong ◽  
Jiyeon Seong ◽  
Hossein Mehrban

Genetic parameters have a significant role in designing a breeding program and are required to evaluate economically important traits. The objective of this study was to estimate heritability and genetic correlation between yearling ultrasound measurements, such as backfat thickness (UBFT), eye muscle area (UEMA), intramuscular fat content (UIMF), and carcass traits, such as backfat thickness (BFT), carcass weight (CW), eye muscle area (EMA), marbling score (MS) at approximately 24 months of age, as well as yearling weight (YW) in Hanwoo bulls (15,796) and steers (5682). The (co) variance components were estimated using a multi-trait animal model. Moderate to high heritability estimates were obtained and were 0.42, 0.50, 0.56, and 0.59 for CW, EMA, BFT, and MS, respectively. Heritability estimates for yearling measurements of YW, UEMA, UBFT, and UIMF were 0.31, 0.32, 0.30, and 0.19, respectively. Favorable and strong genetic correlations were observed between UIMF and MS (0.78), UBFT and BFT (0.63), and UEMA and EMA (0.65). Moreover, the estimated genetic correlation between YW and CW was high (0.84) and relatively moderate between YW and EMA (0.43). These results suggest that genetic improvement can be achieved for carcass traits when using yearling ultrasound measurements as selection criteria in ongoing Hanwoo breeding programs.


2018 ◽  
Vol 16 (1) ◽  
pp. e04SC01 ◽  
Author(s):  
Juliana V. Portes ◽  
Adriana L. Somavilla ◽  
André L. Grion ◽  
Laila T. Dias ◽  
Rodrigo A. Teixeira

          The aim of this study was to estimate the coefficients of heritability and genetic correlations among visual scores (conformation, CPW; precocity, PPW; musculature, MPW) and reproductive traits: age at first lambing (AFL) and scrotal circumference (SC) evaluated at 180 days of age in Suffolk lambs. In the statistical model only the additive genetic effect was considered as random effect. The heritability estimates by univariate analyses for CPW, PPW, MPW, AFL and SC were 0.08, 0.12, 0.09, 0.20 and 0.22, respectively. The genetic correlations among AFL and CPW, PPW, MPW were -0.26, 0.19, and 0.08, respectively. The genetic correlation among SC and CPW, PPW, MPW were, respectively, 0.54, 0.88 and 0.86, and between AFL and SC was 0.26. The direct selection for conformation, precocity and musculature at 180 days of age and age at first lambing will provide slow genetic progress due to low heritability estimates. It is possible to obtain genetic gain in sexual precocity through selection on scrotal circumference in Suffolk rams. The favorable genetic correlation among visual scores and SC and between CPW and AFL, indicated the possibility to gain in genetic progress for reproductive traits through indirect selection of the visual scores in Suffolk sheep.


2019 ◽  
Vol 99 (2) ◽  
pp. 296-306
Author(s):  
Daniel Duarte da Silveira ◽  
Lucas De Vargas ◽  
Rodrigo Junqueira Pereira ◽  
Gabriel Soares Campos ◽  
Ricardo Zambarda Vaz ◽  
...  

The aim of this study was to evaluate the genetic variability, genetic and phenotypic associations, and genetic gains of birth (BW), weaning (WW), and yearling (YW) weights, loin muscle area (LMA), backfat thickness (BF), rump fat thickness (RF), scores of body structure (BS), finishing precocity (FS), and muscling (MS) in Nelore cattle. Genetic parameters were obtained through Bayesian inference using BLUPF90 programs. All studied traits showed genetic variability, with heritability ranging from 0.29 to 0.47. In all studied ages, weights presented positive genetic correlations with LMA (ranging from 0.13 to 0.53), being generally stronger in comparison with the other carcass traits analyzed (BF and RF). Similarly, weights were higher genetic associated with BS (0.47–0.92) than with FS (0.18–0.62) and MS (0.22–0.65), respectively. The BF and RF showed positive and moderate genetic associations with FS and MS (0.31–0.36). Genetic trends were significant (P < 0.05) and favorable for WW, YW, and visual scores. Selection for increasing BW, WW, YW, and LMA will result in modest or no change in BF and RF (correlated response ranging from −0.04 to 0.07 mm per generation). In this population, carcass traits must be included in the selection indexes to obtain genetic gains in carcass quality, if desired.


1981 ◽  
Vol 96 (1) ◽  
pp. 107-113 ◽  
Author(s):  
T. G. Martin ◽  
D. Nicholson ◽  
C. Smith ◽  
D. I. Sales

SUMMARYData on 902 ewes (1755 records) bom over 7 years in the synthetic ABRO Dam Line were analysed by least squares. Reproductive traits of the ewe were not affected by whether she was a single or a twin or by the age of her dam. Ewe age had major effects on all reproductive traits. Litter weight traits were affected by the sex distribution and the age of the litter when weighed.Heritability estimates, both by half sib and regression methods, were low for litter size, low to moderate for litter weights, and higher for ewe and fleece weights. Genetic correlations among the litter-weight traits were high. Together with the heritability estimates, they indicated that selection on litter weight at birth (and perhaps other traits) might give a greater change in total litter weight at weaning, the main measure of ewe productivity and the objective in improvement, than would direct selection.


2004 ◽  
Vol 84 (4) ◽  
pp. 589-597 ◽  
Author(s):  
D. H. Crews ◽  
Jr., M. Lowerison ◽  
N. Caron ◽  
R. A. Kemp

Genetic parameters for three growth and five carcass traits were estimated for Charolais using a combination of carcass progeny test, purebred field performance and pedigree data. Heritabilities and genetic and residual correlations were derived from variance components for birth weight (BWT, n = 54 221), 205-d weaning weight (WT205, n = 31 384), postweaning gain (PWG, n = 19 403), hot carcass weight (HCW, n = 6958), average subcutaneous fat thickness (FAT, n = 6866), longissimus muscle area (REA, n = 6863), marbling score (MAR, n = 6903) and estimated carcass lean yield percentage (PLY, n = 6852) with an animal model (n = 78 728) and restricted maximum likelihood. Breed of dam and contemporary group appropriate to each trait were included as fixed effects in the model, whereas random effects included direct genetic for all traits, maternal genetic for BWT and WT205, and maternal permanent environmental for WT205. Carcass traits were adjusted to a constant harvest age of 425 d. Heritability estimates of 0.53, 0.22, and 0.21 were obtained for direct components of BWT, WT205, and PWG, respectively, and maternal heritabilities were 0.16 and 0.10 for BWT and WT205, respectively. Direct × maternal genetic correlations for BWT (-0.49) and WT205 (-0.35) were negative. Heritabilities for HCW, FAT, REA, MAR, and PLY were 0.33, 0.39, 0.43, 0.34, and 0.46, respectively. Genetic correlations among direct effects for growth traits were moderately positive and generally uncorrelated with maternal effects across traits. Lean and fat deposition in the carcass generally had negative, unfavorable genetic correlations, although improvement in lean yield and marbling score may not be strongly antagonistic. Genetic correlations of direct and maternal components of growth traits with carcass traits suggested that selection for increased growth rate would not be antagonistic to improvement in carcass yield or meat quality. Key words: Carcass, Charolais, correlation, genetic parameters, growth


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 47-47
Author(s):  
Roberto D Sainz ◽  
Nayanny Guimarães ◽  
Cláudio U Magnabosco ◽  
Fernando Lopes

Abstract Frame score (FS) systems for beef cattle generally represent the relationships among growth, body composition, reproduction and mature size, in a simple and practical form. This study aimed to: 1) develop a FS system for Nelore cattle that is biologically sound, easy to interpret, and useful for producers; and 2) estimate the genetic parameters of the FS with productive and reproductive traits. An arbitrary scale (1 to 12) was devised so that each unit corresponds to 15 kg of carcass weight (1 @), as this is a common measure used for marketing beef cattle in Brazil. Therefore, ideal carcass weight, defined as having 6 mm of backfat, would be 18 @ (269 kg) and 15 @ (224 kg) for FS = 6 males and females, respectively. Data from 36,030 animals (22,405 males, 13,565 females) raised on pasture were obtained from participating herds of the National Association of Breeders and Researchers (ANCP). Genetic parameters were estimated in uni- and bicharacteristic analyses under an animal model, using the EM-REML algorithm (AIREMLF90) and Bayesian inference (GIBBS1F90). The heritability estimate for the new FS was 0.38, and its additive genetic correlations were 0.70, 0.72, 0.77, 0.33, -0.57, 0.27, and 0.28 with BW at 365 d, BW at 450 d, hip height, longissimus muscle area, subcutaneous fat thickness, scrotal circumference at 450 d, and age at first calving, respectively. The estimated heritability and genetic correlations indicate that there is enough additive genetic variability to allow for genetic response to selection. The estimates support the notion that larger frame animals are taller, heavier, leaner and later maturing, both in body composition as well as sexually. The new frame score may be a useful tool for genetic selection of animals that are best suited to their environment.


2013 ◽  
Vol 53 (10) ◽  
pp. 1075
Author(s):  
Vinzent Börner ◽  
David J. Johnston ◽  
Hans-Ulrich Graser

Genetic parameters of four ultrasound live-scan traits and five carcass traits of Australian Angus cattle were examined with regard to sex and age of the scanned individuals. Live-scans were subdivided according to whether the observation was obtained from a bull or a heifer. In addition, two age subset (‘young’ and ‘old’) within sex were formed by k-means clustering around two centres within sex according to the age at scanning. REML estimates for heritabilities, genetic, residual and phenotypic correlations for each trait and trait combination were derived from a series of uni-, bi- and tri-variate analysis. Statistically significant age effects could be found for heritablities of scan intra-muscular fat content in heifers and scan fat depth at P8 site and scan rib fat depth in bulls, and for genetic correlations between the scan traits fat depth at P8 site, rib fat depth and eye muscle area. However, differences in heritablities between age sets within sex did not exceed 0.05, and genetic correlations between scan traits of ‘young’ and ‘old’ animals were at least 0.9. Differences between genetic correlations of abattoir carcass traits and ‘young’ and ‘old’ live-scan traits, respectively, were not significant due to high standard errors but up to 0.44. The larger of these differences were found for combinations of scan-traits and non-target carcass traits and not for combination of scan-traits and their actual carcass target traits. Thus, although some results suggest an age effect on the genetic parameters of scan traits, the extent of this effect is of limited impact on breeding value accuracy and genetic gain of scan traits. Furthermore, a possible age effect on correlations to economically important carcass traits need to be underpinned by more carcass traits observations in order to get unambiguous results allowing to draw consequences of scanning younger individuals for accuracy of breeding values and genetic gain in carcass traits.


2020 ◽  
Vol 98 (12) ◽  
Author(s):  
Hadi Esfandyari ◽  
Dinesh Thekkoot ◽  
Robert Kemp ◽  
Graham Plastow ◽  
Jack Dekkers

Abstract Growth, meat quality, and carcass traits are of economic importance in swine breeding. Understanding their genetic basis in purebred (PB) and commercial crossbred (CB) pigs is necessary for a successful breeding program because, although the breeding goal is to improve CB performance, phenotype collection and selection are usually carried out in PB populations housed in biosecure nucleus herds. Thus, the selection is indirect, and the accuracy of selection depends on the genetic correlation between PB and CB performance (rpc). The objectives of this study were to 1) estimate genetic parameters for growth, meat quality, and carcass traits in a PB sire line and related commercial CB pigs and 2) estimate the corresponding genetic correlations between purebred and crossbred performance (rpc). Both objectives were investigated by using pedigree information only (PBLUP) and by combining pedigree and genomic information in a single-step genomic BLUP (ssGBLUP) procedure. Growth rate showed moderate estimates of heritability for both PB and CB based on PBLUP, while estimates were higher in CB based on ssGBLUP. Heritability estimates for meat quality traits were diverse and slightly different based on PB and CB data with both methods. Carcass traits had higher heritability estimates based on PB compared with CB data based on PBLUP and slightly higher estimates for CB data based on ssGBLUP. A wide range of estimates of genetic correlations were obtained among traits within the PB and CB data. In the PB population, estimates of heritabilities and genetic correlations were similar based on PBLUP and ssGBLUP for all traits, while based on the CB data, ssGBLUP resulted in different estimates of genetic parameters with lower SEs. With some exceptions, estimates of rpc were moderate to high. The SE on the rpc estimates was generally large when based on PBLUP due to limited sample size, especially for CBs. In contrast, estimates of rpc based on ssGBLUP were not only more precise but also more consistent among pairs of traits, considering their genetic correlations within the PB and CB data. The wide range of estimates of rpc (less than 0.70 for 7 out of 13 traits) indicates that the use of CB phenotypes recorded on commercial farms, along with genomic information, for selection in the PB population has potential to increase the genetic progress of CB performance.


2019 ◽  
Vol 64 (No. 4) ◽  
pp. 160-165 ◽  
Author(s):  
Bryan Irvine Lopez ◽  
Vanessa Viterbo ◽  
Choul Won Song ◽  
Kang Seok Seo

Abstract: Genetic parameters and accuracy of genomic prediction for production traits in a Duroc population were estimated. Data were on 24 828 purebred Duroc pigs born in 2000–2016. After quality control procedures, 30 263 single nucleotide polymorphism markers and 560 animals remained that were used to predict the genomic breeding values of individuals. Accuracies of predicted breeding values for average daily gain (ADG), backfat thickness (BF), loin muscle area (LMA), lean percentage (LP) and age at 90 kg (D90) between pedigree-based and single-step methods were compared. Analyses were carried out with a multivariate animal model to estimate genetic parameters for production traits while univariate analyses were performed to predict the genomic breeding values of individuals. Heritability estimates from pedigree analysis were moderate to high. Heritability estimates and standard error for ADG, BF, LMA, LP and D90 were 0.35 ± 0.01, 0.35 ± 0.11, 0.24 ± 0.04, 0.42 ± 0.11 and 0.37 ± 0.03, respectively. Genetic correlations of ADG with BF and LP were low and negative. Genetic correlations of LMA with ADG, BF, LP and D90 were –0.37, –0.27, 0.48 and 0.31, respectively. High correlations were observed between ADG and D90 (–0.98), and also between BF and LP (–0.93). Accuracies of genomic breeding values for ADG, BF, LMA, LP and D90 were 0.30, 0.33, 0.38, 0.40 and 0.28, respectively. Corresponding accuracies using pedigree-based method were 0.29, 0.32, 0.38, 0.39 and 0.27, respectively. The results showed that the single-step method did not show significant advantage compared to the pedigree-based method.


Sign in / Sign up

Export Citation Format

Share Document