scholarly journals Seabirds: studies with parasitofauna and potential indicator for environmental anthropogenic impacts

2020 ◽  
Vol 41 (4) ◽  
pp. 1439
Author(s):  
Andressa Maria Rorato Nascimento de Matos ◽  
Camila Domit ◽  
Ana Paula Frederico Rodrigues Loureiro Bracarense

The aim of this review was to present the main anthropogenic threats to seabirds, a taxonomic group described as environmental sentinels, and the dynamics between parasites and hosts and their relationship with the health of the marine ecosystem. Coastal marine environments support various anthropogenic activities, exposing seabirds to multiple and synergistic environmental changes. These activities are considered negative to the maintenance of several seabird species, such as exposure to constant aquatic contaminants and fishing. In addition, parasitic and infectious diseases (viral, bacterial, and fungal) may also play an important role in maintaining some seabird populations. Some pathogenic organisms have public health importance and/or may indicate environmental quality. Host-parasite interaction may be positive, negative, or absent depending on some environmental factors potentially associated with degradation, as well as intrinsic factors of host or parasite. In addition, investigating aspects of seabird mortality also contributes to the constant population monitoring and understanding of the interaction between animals, humans, and the environment. Thus, seabirds and their parasitofauna can provide important ecological and health information, including those related to environmental health, supporting strategies for reducing degradation and maintaining marine ecosystems.

2018 ◽  
Vol 76 (4) ◽  
pp. 925-937 ◽  
Author(s):  
Gabriella E Church ◽  
Robert W Furness ◽  
Glen Tyler ◽  
Lucy Gilbert ◽  
Stephen C Votier

Abstract Understanding anthropogenic impacts are crucial to maintain marine ecosystem health. The North Sea has changed in recent decades, largely due to commercial fishing and climate change. Seabirds can act as useful indicators of these changes. By analyzing n = 20 013 pellets and n = 24 993 otoliths regurgitated by great skuas Stercorarius skua in northern Scotland over five decades from the 1970s to the 2010s (in 36 years 1973–2017), we reveal how the diet of this top predator has changed alongside the changing North Sea ecosystem. Sandeels Ammodytes spp. were the most common dietary item during the 1970s, but became virtually absent from the 1980s onward. Discarded whitefish dominated skua diets from the 1980s to the present day, despite long-term declines in North Sea discard production. However, the discarded fish eaten by great skuas has become smaller and the species composition changed. Skua pellets only rarely contained avian prey in the 1970s but this increased during the 1980s, and fluctuated between 10% and 20% from the 1990s to 2010s. There have also been changes in the avian prey in the diet—black-legged kittiwakes Rissa tridactyla generally being replaced by auks Alcid spp. and northern fulmars Fulmarus glacialis. The Shetland marine ecosystem has experienced steep declines in sandeel stocks and in seabirds that feed on them. Great skuas have been able to prey switch to respond to this change, supported by abundant discards, enabling them to maintain a favourable population status while other seabird species have declined.


Elem Sci Anth ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Haibo He ◽  
Zaihua Liu ◽  
Dongli Li ◽  
Hongbo Zheng ◽  
Jianxin Zhao ◽  
...  

During the past century, many lacustrine environments have changed substantially at the ecosystem level as a result of anthropogenic activities. In this study, the distributions of n-alkane homologues, carbon isotopes (δ13Corg), organic carbon, and the C/N atomic ratio in two sediment cores from Fuxian Lake (Yunnan, southwest China) are used to elucidate the anthropogenic impacts on this deep, oligotrophic, freshwater lake. The carbon preference index (CPI) of long-chain components, average chain length (ACL), proportion of aquatic macrophytes (Paq), and terrigenous/aquatic ratios (TAR) show different temporal patterns that reflect variations in biological production. Notably, the n-alkane homologues are shown to be more sensitive to environmental changes than δ13Corg and the C/N ratio. Prior to the 1950s, minor variations in the sedimentary geochemical record were likely caused by climate changes, and they represent a natural stage of lake evolution. The onset of cultural eutrophication in Fuxian Lake occurred in the 1950s, when the n-alkane proxies collectively exhibited high-amplitude fluctuations but overall decreasing trends that coincided with population growth and related increases in land-use pressure. In the 21st century, Fuxian Lake has become even more eutrophic in response to human activities, as indicated by sharp increases in C/N ratio, Paq, δ13Corg, ACL, CPI, and TAR. Our findings provide robust molecular sedimentary evidence confirming that the environmental evolution of lakes in the Yunnan–Guizhou Plateau over the past century was closely associated with enhanced anthropogenic activities.


2013 ◽  
Vol 103 (4) ◽  
pp. 342-349 ◽  
Author(s):  
Leticia M. Mesa ◽  
María Celina Reynaga ◽  
Marcela del V. Correa ◽  
Martín G. Sirombra

The nature of the riparian and surrounding landscape has been modified by anthropogenic activities, which may subsequently alter the composition and functional structure of macroinvertebrate assemblages. The effect of these changes on function of benthic fauna is difficult to assess due to the scarce knowledge on functional structures in tropical streams. In this study we evaluate whether sites impacted and unimpacted by anthropogenic alterations differed in assemblage composition and density, richness and diversity of each functional feeding group. The selection of the sites was related to their distinct riparian characteristics, following the QBRy riparian quality index. Collector-gatherer was the dominant functional feeding group, comprising 91% of total density, whereas the proportion of shredders was very low, representing less of 0.5% of total density. Asemblage composition of macroinvertebrates differed between impacted and unimpacted sites. Predators were dominant in taxa number, representing about 60% of total taxa richness. In addition, the diversity and richness of collector-gatherers differed significantly between degraded and unimpacted sites, reflecting the sensitivity of this group to environmental changes and the utility to be used in the assessment of anthropogenic modifications. The results of this study reinforce the idea that riparian corridor management is critical for the distribution of macroinvertebrate assemblages as well as functional organization of lotic streams.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Denise P. Silva ◽  
Helena D. M. Villela ◽  
Henrique F. Santos ◽  
Gustavo A. S. Duarte ◽  
José Roberto Ribeiro ◽  
...  

Abstract Background Beginning in the last century, coral reefs have suffered the consequences of anthropogenic activities, including oil contamination. Chemical remediation methods, such as dispersants, can cause substantial harm to corals and reduce their resilience to stressors. To evaluate the impacts of oil contamination and find potential alternative solutions to chemical dispersants, we conducted a mesocosm experiment with the fire coral Millepora alcicornis, which is sensitive to environmental changes. We exposed M. alcicornis to a realistic oil-spill scenario in which we applied an innovative multi-domain bioremediator consortium (bacteria, filamentous fungi, and yeast) and a chemical dispersant (Corexit® 9500, one of the most widely used dispersants), to assess the effects on host health and host-associated microbial communities. Results The selected multi-domain microbial consortium helped to mitigate the impacts of the oil, substantially degrading the polycyclic aromatic and n-alkane fractions and maintaining the physiological integrity of the corals. Exposure to Corexit 9500 negatively impacted the host physiology and altered the coral-associated microbial community. After exposure, the abundances of certain bacterial genera such as Rugeria and Roseovarius increased, as previously reported in stressed or diseased corals. We also identified several bioindicators of Corexit 9500 in the microbiome. The impact of Corexit 9500 on the coral health and microbial community was far greater than oil alone, killing corals after only 4 days of exposure in the flow-through system. In the treatments with Corexit 9500, the action of the bioremediator consortium could not be observed directly because of the extreme toxicity of the dispersant to M. alcicornis and its associated microbiome. Conclusions Our results emphasize the importance of investigating the host-associated microbiome in order to detect and mitigate the effects of oil contamination on corals and the potential role of microbial mitigation and bioindicators as conservation tools. Chemical dispersants were far more damaging to corals and their associated microbiome than oil, and should not be used close to coral reefs. This study can aid in decision-making to minimize the negative effects of oil and dispersants on coral reefs.


2020 ◽  
Vol 156 ◽  
pp. 111178
Author(s):  
Katie W.Y. Yeung ◽  
John P. Giesy ◽  
Guang-Jie Zhou ◽  
Kenneth M.Y. Leung

2021 ◽  
Author(s):  
Alexandros Emmanouilidis ◽  
Konstantinos Panagiotopoulos ◽  
Katerina Kouli ◽  
Pavlos Avramidis

<p>Coastal wetlands are dynamic environments prone to climatic and anthropogenic forcing and ideal settings to study past climatic and environmental changes.  In the eastern Mediterranean region and particularly in Greece, the climate presents high spatiotemporal diversity, while human activity is a significant factor in shaping the landscape. This study presents a sediment record from Klisova lagoon, situated in central Greece, at the eastern part of Messolonghi lagoon complex. The area is recorded from antiquity to have great anthropogenic activity. The paleoenvironmental synthesis was based on standard sedimentological analysis (grain size, TOC, magnetic susceptibility), joint micropaleontological and palynological analysis, X-ray Fluorescence scanning, and radiocarbon dating. The Bayesian age-depth model is based on radiocarbon dating and yields an age of 4700 cal BP for the base of the recovered sediment sequence. For the last 4700 years, the freshwater influx, the progradation of the Evinos river delta and related geomorphological changes control the environmental conditions (e.g. depth and salinity) in the lagoon system. Prior to 4000 cal BP, a relatively shallow water depth, significant terrestrial/freshwater input and increased weathering in the lagoon area are inferred. Elemental proxies and increased dinoflagellate and foraminifera abundances, which indicate marine conditions with prominent freshwater influxes, point to the gradual deepening of the lagoon recorded at the drilling site up to 2000 cal BP. The marine and freshwater conditions equilibrium sets at 1300 cal BP, and the lagoonal system seems to reach its present state. Maxima of anthropogenic pollen indicators during the Mycenaean (~3200 cal BP), Hellenistic (~ 2200 cal BP) and Late Byzantine (~ 800 cal BP) periods suggest intervals of increased anthropogenic activities in the study area.  </p>


Oecologia ◽  
1985 ◽  
Vol 67 (2) ◽  
pp. 157-168 ◽  
Author(s):  
D. T. Rudnick ◽  
R. Elmgren ◽  
J. B. Frithsen

2009 ◽  
Vol 72 (1) ◽  
pp. 111-122 ◽  
Author(s):  
Jemma Finch ◽  
Melanie J. Leng ◽  
Rob Marchant

AbstractLate Quaternary vegetation history and environmental changes in a biodiverse tropical ecosystem are inferred from pollen, charcoal and carbon isotope evidence derived from a ∼ 48,000-yr sedimentary record from the Uluguru Mountains, a component of the Eastern Arc Mountains of Kenya and Tanzania. Results indicate that Eastern Arc forest composition has remained relatively stable during the past ∼ 48,000 yr. Long-term environmental stability of the Eastern Arc forests has been proposed as a mechanism for the accumulation and persistence of species during glacial periods, thus resulting in the diverse forests observed today. The pollen and isotope data presented here indicate some marked changes in abundance but no significant loss in moist forest taxa through the last glacial maximum, thereby providing support for the long-term environmental stability of the Eastern Arc. Anthropogenic activities, including burning and forest clearance, were found to play a moderate role in shaping the mosaic of forest patches and high-altitude grasslands that characterise the site today; however, this influence was tempered by the inaccessibility of the mountain.


Sign in / Sign up

Export Citation Format

Share Document