Analysis of axial turbine stage for small gas turbine engine using parametric three-dimensional model and subject to the manufacture technology

2018 ◽  
pp. 67-72
Author(s):  
Danilov
Author(s):  
Prathapanayaka Rajeevalochanam ◽  
S. N. Agnimitra Sunkara ◽  
Balamurugan Mayandi ◽  
Bala Venkata Ganesh Banda ◽  
Veera Sesha Kumar Chappati ◽  
...  

Aero-thermodynamic and mechanical design of a single stage axial turbine stage has been carried out for small gas turbine engine in Propulsion Division, CSIR-NAL. From the engine design configuration extract, it is envisaged that the single stage axial gas turbine operating close to 50500 rpm and at an elevated temperature of 1095K would meet the power requirement of mixed flow compressor of 385kW. This paper presents the aero-thermodynamic, mechanical design and analysis of a single stage highly loaded axial turbine stage with a stage loading coefficient of 1.45 and a flow coefficient of 0.67. The mean-line and detailed 3D aero-thermodynamic design is carried out using commercially available dedicated turbomachinery design codes Axial® and Axcent™ of Concepts NREC. The number of blades of the rotor and stator are 50 & 19 respectively. The turbine stage has undergone a series of design improvements. The final configuration of single stage turbine is analyzed using commercially available RANS CFD software ANSYS-CFX™ and NUMECAFINE™/Turbo flow solver. The design is carried out by aiming 88% total-to-total efficiency. Detailed 3D-RANS CFD analysis of the turbine shows that, the design requirements of turbine are achieved with enhanced efficiency of 90%. Mechanical design & analysis of the turbine stage is carried out using ANSYS-Mechanical™ software. Nimonic-90 material is selected for fabrication. Detailed non-linear steady thermal-structural analysis is carried out for both stator assembly and rotor BLISK. Burst margin of rotor disk is estimated to be around 63% at design speed.


1982 ◽  
Vol 6 (6) ◽  
pp. 368-375 ◽  
Author(s):  
F. Boysan ◽  
W.H. Ayers ◽  
J. Swithenbank ◽  
Z. Pan

Author(s):  
D. Salinas ◽  
E. E. Cooper

A numerical simulation of the aerothermal characteristics of a gas turbine engine test cell is presented. The three-dimensional system is modeled using the PHOENICS computational fluid dynamics code. Results predict the velocity field, temperatures, pressures, kinetic energy of turbulence, and dissipation rates of turbulent kinetic energy. Numerical results from two versions, a cartesian coordinate model and a body fitted coordinate model, are compared to experimental data. The comparison shows good quantitative and very good qualitative agreement, suggesting that numerical modeling would be useful in the preliminary design of gas turbine test facilities.


1995 ◽  
Vol 117 (1) ◽  
pp. 213-219 ◽  
Author(s):  
M. Metwally ◽  
W. Tabakoff ◽  
A. Hamed

In this work, a study has been conducted to predict blade erosion and surface deterioration of the free power turbine of an automotive gas turbine engine. The blade material erosion model is based on three-dimensional particle trajectory simulations in the three-dimensional turbine flow field. The particle rebound characteristics after surface impacts were determined from experimental measurements of restitution ratios for blade material samples in a particulate flow tunnel. The trajectories provide the spatial distribution of the particle impact parameters over the blade surfaces. A semi-empirical erosion model, derived from erosion tests of material samples at different particulate flow conditions, is used in the prediction of blade surface erosion based on the trajectory impact data. The results are presented for the three-dimensional particle trajectories through the turbine blade passages, the particle impact locations, blade surface erosion pattern, and the associated erosion parameters. These parameters include impact velocity, impact angle, and impact frequency. The data can be used for life prediction and performance deterioration of the automotive engine under investigation.


Aero Gas Turbine engines power aircrafts for civil transport application as well as for military fighter jets. Jet pipe casing assembly is one of the critical components of such an Aero Gas Turbine engine. The objective of the casing is to carry out the required aerodynamic performance with a simultaneous structural performance. The Jet pipe casing assembly located in the rear end of the engine would, in case of fighter jet, consist of an After Burner also called as reheater which is used for thrust augmentation to meet the critical additional thrust requirement as demanded by the combat environment in the war field. The combustion volume for the After burner operation together with the aerodynamic conditions in terms of pressure, temperature and optimum air velocity is provided by the Jet pipe casing. While meeting the aerodynamic requirements, the casing is also expected to meet the structural requirements. The casing carries a Convergent-Divergent Nozzle in the downstream side (at the rear end) and in the upstream side the casing is attached with a rear mount ring which is an interface between engine and the airframe. The mechanical design parameters involving Strength reserve factors, Fatigue Life, Natural Frequencies along with buckling strength margins are assessed while the Jet pipe casing delivers the aerodynamic outputs during the engine operation. A three dimensional non linear Finite Element analysis of the Jet pipe casing assembly is carried out, considering the up & down stream aerodynamics together with the mechanical boundary conditions in order to assess the Mechanical design parameters.


2019 ◽  
pp. 86-90
Author(s):  
Sergey Serbin

The appliance of modern tools of the computational fluid dynamics for the investigation of the pulsation processes in the combustion chamber caused by the design features of flame tubes and aerodynamic interaction compressor, combustor and turbine is discussed. The aim of the research is to investigate and forecast the non-stationary processes in the gas turbine combustion chambers. The results of the numerical experiments which were carried out using three-dimensional mathematical models in gaseous fuels combustion chambers reflect sufficiently the physical and chemical processes of the unsteady combustion and can be recommended to optimize the geometrical and operational parameters of the low-emission combustion chamber. The appliance of such mathematical models are reasonable for the development of new samples of combustors which operate at the lean air-fuel mixture as well as for the modernization of the existing chambers with the aim to develop the constructive measures aimed at reducing the probability of the occurrence of the pulsation combustion modes. Keywords: gas turbine engine, combustor, turbulent combustion, pulsation combustion, numerical methods, mathematical simulation.


2019 ◽  
Vol 3 (4) ◽  
pp. 198-211
Author(s):  
Luiz Gustavo Franco Amaral ◽  
Ruben Bruno Diaz ◽  
Jesuino Takachi Tomita ◽  
Cleverson Bringhenti ◽  
Izabela Batista Henriques

Sign in / Sign up

Export Citation Format

Share Document