The Electronic Spectrum of Graphene

2011 ◽  
Vol 6 (3) ◽  
pp. 71-82
Author(s):  
Arkadiy A. Kozhevnikov

Based on the tight binding approximation for the energy levels of the electron in periodic potential, the electronic spectrum is found of the two-dimensional allotrope of the carbon called graphene. The problem of finding the Landau energy levels of graphene in external magnetic field is solved

2013 ◽  
Vol 28 (16) ◽  
pp. 1350064 ◽  
Author(s):  
CATARINA BASTOS ◽  
ORFEU BERTOLAMI ◽  
NUNO COSTA DIAS ◽  
JOÃO NUNO PRATA

We consider a noncommutative description of graphene. This description consists of a Dirac equation for massless Dirac fermions plus noncommutative corrections, which are treated in the presence of an external magnetic field. We argue that, being a two-dimensional Dirac system, graphene is particularly interesting to test noncommutativity. We find that momentum noncommutativity affects the energy levels of graphene and we obtain a bound for the momentum noncommutative parameter.


2015 ◽  
Vol 15 (1) ◽  
pp. 41-48 ◽  
Author(s):  
Matthias Ratajczak ◽  
Thomas Wondrak ◽  
Klaus Timmel ◽  
Frank Stefani ◽  
Sven Eckert

AbstractIn continuous casting DC magnetic fields perpendicular to the wide faces of the mold are used to control the flow in the mold. Especially in this case, even a rough knowledge of the flow structure in the mold would be highly desirable. The contactless inductive flow tomography (CIFT) allows to reconstruct the dominating two-dimensional flow structure in a slab casting mold by applying one external magnetic field and by measuring the flow-induced magnetic fields outside the mold. For a physical model of a mold with a cross section of 140 mm×35 mm we present preliminary measurements of the flow field in the mold in the presence of a magnetic brake. In addition, we show first reconstructions of the flow field in a mold with the cross section of 400 mm×100 mm demonstrating the upward scalability of CIFT.


2016 ◽  
Vol 845 ◽  
pp. 158-161
Author(s):  
S.J. Lamekhov ◽  
Dmitry A. Kuzmin ◽  
Igor V. Bychkov ◽  
I.A. Maltsev ◽  
V.G. Shavrov

Behavior of quasi-one-dimensional multiferoic Ca3CoMnO6 in external magnetic field was investigated. Modelling by Monte Carlo method was performed to show influence of external magnetic field on appearance of polarization and temperature of phase transition in electric subsystem. Magnetization, polarization and energy components for magnetic and electric subsystems dependencies were achieved for different values of external magnetic field. Modelling showed that periodic potential in form of Frenkel-Kontorova makes influence on maximal values and temperature of phase transitions for magnetization and polarization.


2012 ◽  
Vol 152 (14) ◽  
pp. 1221-1229 ◽  
Author(s):  
Hai-Feng Zhang ◽  
Shao-Bin Liu ◽  
Xiang-Kun Kong ◽  
Bo-Rui Bian ◽  
Ya-Nan Guo

Sign in / Sign up

Export Citation Format

Share Document