scholarly journals A formula relating Bell polynomials and Stirling numbers of the first kind

2021 ◽  
Vol 2 (2) ◽  
pp. Article #S2R12
Author(s):  
Mark Shattuck ◽  
2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Tamás Lengyel

International audience Let $n$ and $k$ be positive integers, $d(k)$ and $\nu_2(k)$ denote the number of ones in the binary representation of $k$ and the highest power of two dividing $k$, respectively. De Wannemacker recently proved for the Stirling numbers of the second kind that $\nu_2(S(2^n,k))=d(k)-1, 1\leq k \leq 2^n$. Here we prove that $\nu_2(S(c2^n,k))=d(k)-1, 1\leq k \leq 2^n$, for any positive integer $c$. We improve and extend this statement in some special cases. For the difference, we obtain lower bounds on $\nu_2(S(c2^{n+1}+u,k)-S(c2^n+u,k))$ for any nonnegative integer $u$, make a conjecture on the exact order and, for $u=0$, prove part of it when $k \leq 6$, or $k \geq 5$ and $d(k) \leq 2$. The proofs rely on congruential identities for power series and polynomials related to the Stirling numbers and Bell polynomials, and some divisibility properties.


Mathematics ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 1086 ◽  
Author(s):  
Taekyun Kim ◽  
Dae San Kim ◽  
Hyunseok Lee ◽  
Jongkyum Kwon

Recently, the partially degenerate Bell polynomials and numbers, which are a degenerate version of Bell polynomials and numbers, were introduced. In this paper, we consider the new type degenerate Bell polynomials and numbers, and obtain several expressions and identities on those polynomials and numbers. In more detail, we obtain an expression involving the Stirling numbers of the second kind and the generalized falling factorial sequences, Dobinski type formulas, an expression connected with the Stirling numbers of the first and second kinds, and an expression involving the Stirling polynomials of the second kind.


Mathematics ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 144 ◽  
Author(s):  
Ugur Duran ◽  
Mehmet Acikgoz

The main aim of this paper is to introduce the degenerate truncated forms of multifarious special polynomials and numbers and is to investigate their various properties and relationships by using the series manipulation method and diverse special proof techniques. The degenerate truncated exponential polynomials are first considered and their several properties are given. Then the degenerate truncated Stirling polynomials of the second kind are defined and their elementary properties and relations are proved. Also, the degenerate truncated forms of the bivariate Fubini and Bell polynomials and numbers are introduced and various relations and formulas for these polynomials and numbers, which cover several summation formulas, addition identities, recurrence relationships, derivative property and correlations with the degenerate truncated Stirling polynomials of the second kind, are acquired. Thereafter, the truncated degenerate Bernoulli and Euler polynomials are considered and multifarious correlations and formulas including summation formulas, derivation rules and correlations with the degenerate truncated Stirling numbers of the second are derived. In addition, regarding applications, by introducing the degenerate truncated forms of the classical Bernstein polynomials, we obtain diverse correlations and formulas. Some interesting surface plots of these polynomials in the special cases are provided.


Axioms ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 112 ◽  
Author(s):  
Irem Kucukoglu ◽  
Burcin Simsek ◽  
Yilmaz Simsek

The aim of this paper is to construct generating functions for new families of combinatorial numbers and polynomials. By using these generating functions with their functional and differential equations, we not only investigate properties of these new families, but also derive many new identities, relations, derivative formulas, and combinatorial sums with the inclusion of binomials coefficients, falling factorial, the Stirling numbers, the Bell polynomials (i.e., exponential polynomials), the Poisson–Charlier polynomials, combinatorial numbers and polynomials, the Bersntein basis functions, and the probability distribution functions. Furthermore, by applying the p-adic integrals and Riemann integral, we obtain some combinatorial sums including the binomial coefficients, falling factorial, the Bernoulli numbers, the Euler numbers, the Stirling numbers, the Bell polynomials (i.e., exponential polynomials), and the Cauchy numbers (or the Bernoulli numbers of the second kind). Finally, we give some remarks and observations on our results related to some probability distributions such as the binomial distribution and the Poisson distribution.


Author(s):  
Feng Qi ◽  
Da-Wei Niu ◽  
Bai-Ni Guo

In the paper, by virtue of the Faà di Bruno formula, some properties of the Bell polynomials of the second kind, and an inversion formula for the Stirling numbers of the first and second kinds, the authors establish meaningfully and significantly two identities which simplify coefficients in a family of ordinary differential equations associated with higher order Bernoulli numbers of the second kind.


Author(s):  
Feng Qi ◽  
Da-Wei Niu ◽  
Bai-Ni Guo

In the paper, by virtue of the Fa`a di Bruno formula, some properties of the Bell polynomials of the second kind, and the inversion formulas of binomial numbers and the Stirling numbers of the first and second kinds, the authors simplify meaningfully and significantly coefficients in two families of ordinary differential equations associated with higher order Frobenius–Euler numbers.


Symmetry ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 724 ◽  
Author(s):  
Dae San Kim ◽  
Han Young Kim ◽  
Dojin Kim ◽  
Taekyun Kim

Here we would like to introduce the extended r-central incomplete and complete Bell polynomials, as multivariate versions of the recently studied extended r-central factorial numbers of the second kind and the extended r-central Bell polynomials, and also as multivariate versions of the r- Stirling numbers of the second kind and the extended r-Bell polynomials. In this paper, we study several properties, some identities and various explicit formulas about these polynomials and their connections as well.


Axioms ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 29
Author(s):  
Ugur Duran ◽  
Serkan Araci ◽  
Mehmet Acikgoz

In this paper, we consider Bell-based Stirling polynomials of the second kind and derive some useful relations and properties including some summation formulas related to the Bell polynomials and Stirling numbers of the second kind. Then, we introduce Bell-based Bernoulli polynomials of order α and investigate multifarious correlations and formulas including some summation formulas and derivative properties. Also, we acquire diverse implicit summation formulas and symmetric identities for Bell-based Bernoulli polynomials of order α. Moreover, we attain several interesting formulas of Bell-based Bernoulli polynomials of order α arising from umbral calculus.


Mathematics ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 40 ◽  
Author(s):  
Taekyun Kim ◽  
Dae San Kim ◽  
Han Young Kim ◽  
Jongkyum Kwon

The new type degenerate of Bell polynomials and numbers were recently introduced, which are a degenerate version of Bell polynomials and numbers and are different from the previously introduced partially degenerate Bell polynomials and numbers. Several expressions and identities on those polynomials and numbers were obtained. In this paper, as a further investigation of the new type degenerate Bell polynomials, we derive several identities involving those degenerate Bell polynomials, Stirling numbers of the second kind and Carlitz’s degenerate Bernoulli or degenerate Euler polynomials. In addition, we obtain an identity connecting the degenerate Bell polynomials, Cauchy polynomials, Bernoulli numbers, Stirling numbers of the second kind and degenerate Stirling numbers of the second kind.


Sign in / Sign up

Export Citation Format

Share Document