scholarly journals Seismic assessment of out-of-plane loaded unreinforced masonry walls in multi-storey buildings

Author(s):  
Hossein Derakhshan ◽  
Dmytro Y. Dizhur ◽  
Michael C. Griffith ◽  
Jason M. Ingham

A procedure is proposed to evaluate the dynamic out-of-plane stability of cracked unreinforced masonry (URM) walls located in multi-storey URM buildings. The equations of dynamic motion are derived from first principles and representative single-degree-of-freedom (SDOF) models are proposed. The models have nonlinear stiffness properties that correspond to the restoring gravitational forces. A method is suggested to transform the nonlinear problem to a corresponding linear equivalent so that conventional spectral methods can be used to calculate wall response. The dynamic interaction between the URM building as the main structural system and the out-of-plane loaded walls as secondary elements is addressed by developing floor response spectra. Several buildings were assumed in a parametric study and subjected to code-compatible ground motion records. The absolute acceleration response at floor levels was calculated and the response spectra for that modified acceleration were subsequently obtained. The results from the study suggest that modifications should be made to the equations proposed for the Parts response spectra in the New Zealand seismic loading standard, NZS 1170.5:2004, in order to calculate the spectral response of out-of-plane loaded URM walls. Several worked examples are presented to demonstrate application of the procedure.

Author(s):  
C. Adam ◽  
F. Ziegler

Abstract The influence of light-weight secondary structures on the dynamic response of earthquake excited hysteretically damped shear frames with various elastic and inelastic substructure properties is studied numerically. The numerical procedure used in this paper is based on an iterative synthesis, where interface conditions as well as inelastic deformations are treated as additional fictitious loads and their intensities are updated in an iterative process. Acceleration response spectra of shear frames as well as floor response spectra are generated for various modal primary to secondary mass ratios. Also spectra of the standard deviation of primary and secondary accelerations are computed. Results, efficiently derived by the proposed method, are set in contrast to those derived by decoupled analyses to estimate their capability with respect to hysteretic structural behavior.


2017 ◽  
Vol 33 (1_suppl) ◽  
pp. 243-273 ◽  
Author(s):  
Giuseppe Brando ◽  
Davide Rapone ◽  
Enrico Spacone ◽  
Matt S. O'Banion ◽  
Michael J. Olsen ◽  
...  

This paper documents and analyzes the seismic behavior of unreinforced masonry (URM) buildings that were damaged by the 2015 Gorkha earthquake in Nepal, and reports on the performance of palaces, giving an overview on the failures suffered by significant examples of these monumental buildings. Field reconnaissance was completed through both rapid, in-situ visual assessment and state-of-the-art procedures utilizing light detection and ranging (lidar) and virtual reality (VR) technologies. Both the visual and virtual assessments were compared for 20 structures and were generally consistent; however, the virtual assessment process enabled detection of damage that could not be captured or was difficult to distinguish in the field observations. Further, both in-plane and out-of-plane mechanisms were analyzed and attributed to specific structural deficiencies that usually characterize poorly detailed masonry buildings. Moreover, wall overturning was correlated with the peculiarities of the pseudo-accelerations and rocking response spectra of the earthquake.


Author(s):  
Kieran Haymes ◽  
Timothy Sullivan ◽  
Reagan Chandramohan

A practice-oriented modal superposition method for setting elastic floor acceleration response spectra is proposed in this paper. The approach builds on previous contributions in the literature, making specific recommendations to explicitly consider floor displacement response spectra and accounts for uncertainty in modal characteristics. The method aims to provide reliable predictions which improve on existing code methods but maintain simplicity to enable adoption in practical design. This work is motivated by recent seismic events which have illustrated the significant costs that can be incurred following damage to secondary and nonstructural components within buildings, even where the structural system has performed well. This has prompted increased attention to the seismic performance of nonstructural components with questions being raised about the accuracy of design floor acceleration response spectra used in practice. By comparing floor acceleration response spectra predicted by the proposed method with those recorded from instrumented buildings in New Zealand, it is shown that the proposed approach performs well, particularly if a good estimate of the building’s fundamental period of vibration is available.


2014 ◽  
Vol 2 (2) ◽  
pp. 963-997 ◽  
Author(s):  
G. Grelle ◽  
L. Bonito ◽  
P. Revellino ◽  
L. Guerriero ◽  
F. M. Guadagno

Abstract. An hybrid model, consisting of GIS and metamodel (model of model) procedures, was introduced with the aim of estimating the 1-D spatial seismic site response. Inputs and outputs are provided and processed by means of an appropriate GIS model, named GIS Cubic Model (GCM). This discretizes the seismic underground half-space in a pseudo-tridimensional way. GCM consists of a layered parametric structure aimed at resolving a predicted metamodel by means of pixel to pixel vertical computing. The metamodel leading to the determination of a bilinear-polynomial function is able to design the classic shape of the spectral acceleration response in relation to the main physical parameters that characterize the spectrum itself. The main physical parameters consist of (i) the average shear wave velocity of the shallow layer, (ii) the fundamental period and, (iii) the period where the spatial spectral response is required. The metamodel is calibrated on theoretical spectral accelerations regarding the local likely Vs-profiles, which are obtained using the Monte Carlo simulation technique on the basis of the GCM information. Therefore, via the GCM structure and the metamodel, the hybrid model provides maps of normalized acceleration response spectra. The hybrid model was applied and tested on the built-up area of the San Giorgio del Sannio village, located in a high-risk seismic zone of Southern Italy.


1990 ◽  
Vol 17 (3) ◽  
pp. 338-365 ◽  
Author(s):  
Denis Mitchell ◽  
René Tinawi ◽  
Tim Law

The November 25, 1988, Saguenay earthquake prompted a site visit by a team representing the Canadian National Committee on Earthquake Engineering. This paper contains selected ground motion records in the form of acceleration-time histories, obtained from the Geological Survey of Canada, and corresponding response spectra. The horizontal acceleration spectrum obtained for Chicoutimi is compared with the design base shear coefficients from the 1980, 1985, and 1990 National Building Codes of Canada. Failures of natural slopes and embankments as well as both architectural and structural damage are discussed. The significant role played by the presence of soft subsoil in amplifying the ground motion and resulting damage is illustrated. Although no major structural failures occurred, there were many examples of poor performance, and in some cases failures, of unreinforced masonry walls. Concerns are expressed over the abundance of unreinforced masonry, particularly in schools and buildings such as hospitals, for which postdisaster performance must be ensured. Key words: earthquake, Saguenay, soils, structures, codes, masonry.


1993 ◽  
Vol 8 (3) ◽  
pp. 167-176 ◽  
Author(s):  
Gina Lee-Glauser ◽  
Goodarz Ahmadi

Vibrations of a satellite and one of its sensitive subsystems during orbiter lift-off are studied. A single degree-of-freedom representation of the subsystem and a five degree-of-freedom lump parameter model of the satellite are considered. Deflection and acceleration response spectra of the satellite and its subsystem subject to sinusoidal excitation and the STS - 41 lift-off accelerations are evaluated. The significance of the subsystem and primary satellite interaction is investigated. The effect of mass ratio and damping coeficient of the subsystem on the peak deflection and acceleration response spectra of the satellite and its subsystem are examined.


1990 ◽  
Vol 17 (3) ◽  
pp. 366-394 ◽  
Author(s):  
René Tinawi ◽  
Denis Mitchell ◽  
Tim Law

The November 25, 1988, Saguenay earthquake prompted a site visit by a team representing the Canadian National Committee on Earthquake Engineering. This paper contains selected ground motion records in the form of acceleration-time histories, obtained from the Geological Survey of Canada, and corresponding response spectra. The horizontal acceleration spectrum obtained for Chicoutimi is compared with the design base shear coefficients from the 1980, 1985, and 1990 National Building Codes of Canada. Failures of natural slopes and embankments as well as both architectural and structural damage are discussed. The significant role played by the presence of soft subsoil in amplifying the ground motion and resulting damage is illustrated. Although no major structural failures occurred, there were many examples of poor performance, and in some cases failures, of unreinforced masonry walls. Concerns are expressed over the abundance of unreinforced masonry, particularly in schools and buildings such as hospitals, for which postdisaster performance must be ensured. Key words: earthquake, Saguenay, soils, structures, codes, masonry.


Author(s):  
S. R. Uma ◽  
John X. Zhao ◽  
Andrew B. King

Earthquake loadings standard NZS 1170.5:2004 has introduced new provisions for the design of building parts and non-structural components. The provisions include factors to define peak floor acceleration up the height of a building, and acceleration response amplifications for components that are quite different from overseas counterparts. In this study, acceleration demands on non-structural components located in ductile frame buildings are analysed under earthquake records from crustal and slab events, for design levels representing ultimate limit state and serviceability limit state. A floor response spectra approach is used to study the demands on non-structural components. It is noted that the peak floor acceleration demands with respect to that of the ground are not amplified up the height of the building to the extent suggested in NZS provisions. The floor response spectra show peaks near the modal periods of the building indicating higher demands on the components with periods closer to the building period. However, NZS provisions fail to include this effect, since the spectral response amplification is defined independent of building period. Spectral demands exceed the NZS provisions at the fundamental periods of the buildings, more significantly at serviceability conditions, indicating potential failure of non-structural components with periods close to the building periods. Following the analytical observations from the buildings considered in this study it is clear that the design provisions for non-structural components should be linked to the structural response for specific performance levels rather than the ‘life-safety’ performance level only that is currently adopted in the New Zealand design standard.


Author(s):  
Nikita Chernukha

The article is about nuclear power plant (NPP) safety analysis in case of aircraft crash. Specifically, the article considers the following problems: inclusion of aircraft crash into NPP design bases regarding calculation of frequency of an aircraft crash into NPP; aspects of justification of loads on NPP structures, systems and components (SSCs) caused by mechanical action of a primary missile – aircraft fuselage impact. Probabilistic characteristics of such random parameters as frequency of aircraft crash and direction of aircraft trajectory are determined by the results of analysis of world statistics of aviation accidents. Method of calculation of aircraft crash frequency on structures, buildings and NPP as a whole is presented. It takes into account options of accidental and intentional aircraft crashes and various aircraft approach scenarios. Procedure of probabilistic justification of loads on civil structures under aircraft impact is described. The loads are specified so as not to exceed allowable value of failure probability of NPP as a whole. Calculation of failure frequency of civil structures of existing NPP is given as an example to show analysis in case of a crash of an aircraft heavier than considered in NPP design. Procedure of probabilistic justification of dynamic loads on NPP equipment in case of aircraft impact is described. Method of floor response spectra (FRS) calculation with the required non-exceedance probability is given. Probabilistically justified loads in case of intentional aircraft impact (act of terrorism) are also considered. Additionally it is presented how internal forces calculated with the use of FRS with the required non-exceedance probability can be summed to provide analysis of subsystems.


2020 ◽  
Vol 36 (2_suppl) ◽  
pp. 213-237
Author(s):  
Miguel A Jaimes ◽  
Adrián D García-Soto

This study presents an evaluation of floor acceleration demands for the design of rigid and flexible acceleration-sensitive nonstructural components in buildings, calculated using the most recent Mexico City seismic design provisions, released in 2017. This evaluation includes two approaches: (1) a simplified continuous elastic model and (2) using recordings from 10 instrumented buildings located in Mexico City. The study found that peak floor elastic acceleration demands imposed on rigid nonstructural components into buildings situated in Mexico City might reach values of 4.8 and 6.4 times the peak ground acceleration at rock and soft sites, respectively. The peak elastic acceleration demands imposed on flexible nonstructural components in all floors, estimated using floor response spectra, might be four times larger than the maximum acceleration of the floor at the point of support of the component for buildings located in rock and soft soil. Comparison of results from the two approaches with the current seismic design provisions revealed that the peak acceleration demands and floor response spectra computed with the current 2017 Mexico City seismic design provisions are, in general, adequate.


Sign in / Sign up

Export Citation Format

Share Document