Site characterisation of GeoNet stations for the New Zealand Strong Motion Database

Author(s):  
Anna Kaiser ◽  
Chris Van Houtte ◽  
Nick Perrin ◽  
Liam Wotherspoon ◽  
Graeme McVerry

The New Zealand Strong Motion Database provides a wealth of new strong motion data for engineering applications. In order to utilise these data in ground motion prediction, characterisation of key site parameters at each of the ~497 past and present GeoNet strong motion stations represented in the database is required. Here, we present the compilation of a complete set of site metadata for the New Zealand database, including four key parameters: i) NZS1170.5 site subsoil classification, ii) the time-averaged shear-wave velocity to a depth of 30 m (Vs30), iii) fundamental site period (Tsite) and iv) depth to a shear-wave velocity of 1000 m/s (Z1.0, a proxy for depth to bedrock). In addition, we have assigned a quality estimate (Quality 1 – 3) to each numerical parameter to provide a qualitative estimate of the uncertainty. New high-quality Tsite, Vs30 and Z1.0 estimates have been obtained from a variety of recent studies, and reconciled with available geological information. This database will be used in efforts to guide development and testing of new and existing ground motion prediction models in New Zealand, allowing re-examination of the most important site parameters that control site response in a New Zealand setting. Preliminary analyses, using the newly compiled data, suggest that high quality site parameters can reduce uncertainty in ground motion prediction. Furthermore, the database can be used to identify suitable rock reference sites for seismological research, and as a guide to more detailed site-specific references in the literature. The database provides an additional resource for informing engineering design, however it is not suitable as a replacement for site-specific assessment.

2020 ◽  
Vol 36 (3) ◽  
pp. 1331-1358 ◽  
Author(s):  
Van-Bang Phung ◽  
Chin Hsiung Loh ◽  
Shu Hsien Chao ◽  
Norman A Abrahamson

A ground motion prediction equation (GMPE) is presented for computing the median and standard deviation of peak ground acceleration (PGA) and 5% damped pseudo-spectral acceleration (PSA) for periods between 0.01 s and 5.0 s for probabilistic seismic hazard analysis (PSHA) and engineering applications in Taiwan. An integrated strong motion dataset consisting of two subduction earthquake regions was selected from 3314 recordings from Taiwan with M4.5 to M7.1 and 3376 recordings from Japan with M6.5 to M9.1. This dataset was then used to validate, and refit where necessary, the function form provided by Abrahamson et al. for application to Taiwan subduction earthquakes. The proposed model accounts for the extrapolation behaviors associated with the large-magnitude scaling and the near-source scaling terms, both of which were developed empirically by using the combined Taiwan–Japan dataset. The distance attenuation and site term were developed specifically for the Taiwan region. The site term is based on two parameters; the time-averaged shear wave velocity of the top 30 m depth ( VS30) and the depth-to-the-shear wave velocity horizon of 1.0 km/s ( Z1.0).


2010 ◽  
Vol 26 (3) ◽  
pp. 635-650 ◽  
Author(s):  
Kenneth W. Campbell ◽  
Yousef Bozorgnia

Cumulative absolute velocity (CAV), defined as the integral of the absolute acceleration time series, has been used as an index to indicate the possible onset of structural damage to nuclear power plant facilities and liquefaction of saturated soils. However, there are very few available ground motion prediction equations for this intensity measure. In this study, we developed a new empirical prediction equation for the horizontal component of CAV using the strong motion database and functional forms that were used to develop similar prediction equations for peak response parameters as part of the PEER Next Generation Attenuation (NGA) Project. We consider this relationship to be valid for magnitudes ranging from 5.0 up to 7.5–8.5 (depending on fault mechanism) and distances ranging from 0–200 km. We found the interevent, intra-event, and intracomponent standard deviations from this relationship to be smaller than any intensity measure we have investigated thus far.


2008 ◽  
Vol 24 (1) ◽  
pp. 99-138 ◽  
Author(s):  
David M. Boore ◽  
Gail M. Atkinson

This paper contains ground-motion prediction equations (GMPEs) for average horizontal-component ground motions as a function of earthquake magnitude, distance from source to site, local average shear-wave velocity, and fault type. Our equations are for peak ground acceleration (PGA), peak ground velocity (PGV), and 5%-damped pseudo-absolute-acceleration spectra (PSA) at periods between 0.01 s and 10 s. They were derived by empirical regression of an extensive strong-motion database compiled by the “PEER NGA” (Pacific Earthquake Engineering Research Center's Next Generation Attenuation) project. For periods less than 1 s, the analysis used 1,574 records from 58 mainshocks in the distance range from 0 km to 400 km (the number of available data decreased as period increased). The primary predictor variables are moment magnitude ( M), closest horizontal distance to the surface projection of the fault plane ( RJB), and the time-averaged shear-wave velocity from the surface to 30 m ( VS30). The equations are applicable for M=5–8, RJB<200 km, and VS30=180–1300 m/s.


2021 ◽  
pp. 875529302110275
Author(s):  
Carlos A Arteta ◽  
Cesar A Pajaro ◽  
Vicente Mercado ◽  
Julián Montejo ◽  
Mónica Arcila ◽  
...  

Subduction ground motions in northern South America are about a factor of 2 smaller than the ground motions for similar events in other regions. Nevertheless, historical and recent large-interface and intermediate-depth slab earthquakes of moment magnitudes Mw = 7.8 (Ecuador, 2016) and 7.2 (Colombia, 2012) evidenced the vast potential damage that vulnerable populations close to earthquake epicenters could experience. This article proposes a new empirical ground-motion prediction model for subduction events in northern South America, a regionalization of the global AG2020 ground-motion prediction equations. An updated ground-motion database curated by the Colombian Geological Survey is employed. It comprises recordings from earthquakes associated with the subduction of the Nazca plate gathered by the National Strong Motion Network in Colombia and by the Institute of Geophysics at Escuela Politécnica Nacional in Ecuador. The regional terms of our model are estimated with 539 records from 60 subduction events in Colombia and Ecuador with epicenters in the range of −0.6° to 7.6°N and 75.5° to 79.6°W, with Mw≥4.5, hypocentral depth range of 4 ≤  Zhypo ≤ 210 km, for distances up to 350 km. The model includes forearc and backarc terms to account for larger attenuation at backarc sites for slab events and site categorization based on natural period. The proposed model corrects the median AG2020 global model to better account for the larger attenuation of local ground motions and includes a partially non-ergodic variance model.


Author(s):  
Roberto Paolucci ◽  
Mauro Aimar ◽  
Andrea Ciancimino ◽  
Marco Dotti ◽  
Sebastiano Foti ◽  
...  

AbstractIn this paper the site categorization criteria and the corresponding site amplification factors proposed in the 2021 draft of Part 1 of Eurocode 8 (2021-draft, CEN/TC250/SC8 Working Draft N1017) are first introduced and compared with the current version of Eurocode 8, as well as with site amplification factors from recent empirical ground motion prediction equations. Afterwards, these values are checked by two approaches. First, a wide dataset of strong motion records is built, where recording stations are classified according to 2021-draft, and the spectral amplifications are empirically estimated computing the site-to-site residuals from regional and global ground motion models for reference rock conditions. Second, a comprehensive parametric numerical study of one-dimensional (1D) site amplification is carried out, based on randomly generated shear-wave velocity profiles, classified according to the new criteria. A reasonably good agreement is found by both approaches. The most relevant discrepancies occur for the shallow soft soil conditions (soil category E) that, owing to the complex interaction of shear wave velocity, soil deposit thickness and frequency range of the excitation, show the largest scatter both in terms of records and of 1D numerical simulations. Furthermore, 1D numerical simulations for soft soil conditions tend to provide lower site amplification factors than 2021-draft, as well as lower than the corresponding site-to-site residuals from records, because of higher impact of non-linear (NL) site effects in the simulations. A site-specific study on NL effects at three KiK-net stations with a significantly large amount of high-intensity recorded ground motions gives support to the 2021-draft NL reduction factors, although the very limited number of recording stations allowing such analysis prevents deriving more general implications. In the presence of such controversial arguments, it is reasonable that a standard should adopt a prudent solution, with a limited reduction of the site amplification factors to account for NL soil response, while leaving the possibility to carry out site-specific estimations of such factors when sufficient information is available to model the ground strain dependency of local soil properties.


Sign in / Sign up

Export Citation Format

Share Document