Strategic Interactions and Uncertainty in Decisions to Curb Greenhouse Gas Emissions

2021 ◽  
Vol 16 (2) ◽  
pp. 214-262
Author(s):  
Margaret Insley ◽  
◽  
Tracy Snoddon ◽  
Peter A. Forsyth ◽  
◽  
...  

This paper examines the strategic interactions of two large regions making choices about greenhouse gas emissions in the face of rising global temperatures. Three central features are highlighted: uncertainty, the incentive for free riding, and asymmetric characteristics of decision makers. Optimal decisions are modelled in a fully dynamic, feedback Stackelberg pollution game. Global average temperature is modelled as a mean reverting stochastic process. A numerical solution of a coupled system of Hamilton-Jacobi-Bellman equations is implemented and the probability distribution of outcomes is illustrated with Monte Carlo simulation. When players are identical, the outcome of the game is much worse than the social planner’s outcome. An increase in temperature volatility reduces player utility, making cooperative action through a social planner more urgent. Asymmetric damages or asymmetric preferences for emissions reductions are shown to have important effffects on the strategic interactions of players.

2009 ◽  
pp. 107-120 ◽  
Author(s):  
I. Bashmakov

On the eve of the worldwide negotiations of a new climate agreement in December 2009 in Copenhagen it is important to clearly understand what Russia can do to mitigate energy-related greenhouse gas emissions in the medium (until 2020) and in the long term (until 2050). The paper investigates this issue using modeling tools and scenario approach. It concludes that transition to the "Low-Carbon Russia" scenarios must be accomplished in 2020—2030 or sooner, not only to mitigate emissions, but to block potential energy shortages and its costliness which can hinder economic growth.


2017 ◽  
Vol 4 (3) ◽  
pp. 62-72
Author(s):  
O. Zhukorsky ◽  
O. Nykyforuk ◽  
N. Boltyk

Aim. Proper development of animal breeding in the conditions of current global problems and the decrease of anthropogenic burden on environment due to greenhouse gas emissions, caused by animal breeding activity, require the study of interaction processes between animal breeding and external climatic conditions. Methods. The theoretical substantiation of the problem was performed based on scientifi c literature, statistical informa- tion of the UN Food and Agriculture Organization and the data of the National greenhouse gas emissions inventory in Ukraine. Theoretically possible emissions of greenhouse gases into atmosphere due to animal breeding in Ukraine and specifi c farms are calculated by the international methods using the statistical infor- mation about animal breeding in Ukraine and the economic-technological information of the activity of the investigated farms. Results. The interaction between the animal breeding production and weather-and-climate conditions of environment was analyzed. Possible vectors of activity for the industry, which promote global warming and negative processes, related to it, were determined. The main factors, affecting the formation of greenhouse gases from the activity of enterprises, aimed at animal breeding production, were characterized. Literature data, statistical data and calculations were used to analyze the role of animal breeding in the green- house gas emissions in global and national framework as well as at the level of specifi c farms with the consid- eration of individual specifi cities of these farms. Conclusions. Current global problems require clear balance between constant development of sustainable animal breeding and the decrease of the carbon footprint due to the activity of animal breeding.


Sign in / Sign up

Export Citation Format

Share Document