ASSESSMENT OF FLUCTUATIONS IN THE CASPIAN SEA LEVEL UNDER THE INFLUENCE OF CLIMATE CHANGE FOR THE FUTURE UNTIL 2050

2021 ◽  
Vol 100 (1) ◽  
pp. 70-77
Author(s):  
N.I. Ivkina ◽  
◽  
A.V. Galayeva ◽  
◽  

The article considers the possible fluctuation of the Caspian Sea level in the future until 2050, taking into an account the climate changes. For this purpose, possible changes in the river inflow to the sea and meteorological parameters (precipitation, air temperature and evaporation from the water surface) were predicted. Changes in the meteorological parameters were estimated according to two climate scenarios RCP4. 5 and RCP8.5.

2014 ◽  
Author(s):  
Paul Verlaan ◽  
Ben Bellamy ◽  
Ainur Abuova

2014 ◽  
Author(s):  
Paul Verlaan ◽  
Ben Bellamy ◽  
Ainur Abuova

2014 ◽  
Author(s):  
Kendra Garner ◽  
Michelle Chang ◽  
Matthew Fulda ◽  
Jon Berlin ◽  
Rachel Freed ◽  
...  

Local increases in sea level caused by global climate change pose a significant threat to the persistence of many coastal plant species through exacerbating inundation, flooding, and erosion. In addition to sea level rise (SLR), climate changes in the form of air temperature and precipitation regimes will also alter habitats of coastal plant species. Although numerous studies have analyzed the effect of climate change on future habitats through species distribution models (SDMs), none have incorporated the threat of exposure to SLR. We developed a model that quantified the effect of both SLR and climate change on habitat for 88 rare coastal plant species in San Luis Obispo, Santa Barbara, and Ventura Counties, California, USA. Our SLR model projects that by the year 2100, 60 of the 88 species will be threatened by SLR. We found that the probability of being threatened by SLR strongly correlates with a species’ area, elevation, and distance from the coast, and that ten species could lose their entire current habitat in the study region. We modeled the habitat suitability of these 10 species under future climate using a species distribution model (SDM). Our SDM projects that 4 of the 10 species will lose all suitable current habitats in the region as a result of climate change. While SLR accounts for up to 9.2 km2 loss in habitat, climate change accounts for habitat suitability changes ranging from a loss of 1439 km2 for one species to a gain of 9795 km2 for another species. For three species, SLR is projected to reduce future suitable area by as much as 28% of total area. This suggests that while SLR poses a higher risk, climate changes in precipitation and air temperature represents a lesser known but potentially larger risk and a small cumulative effect from both.


2014 ◽  
Author(s):  
Kendra Garner ◽  
Michelle Chang ◽  
Matthew Fulda ◽  
Jon Berlin ◽  
Rachel Freed ◽  
...  

Local increases in sea level caused by global climate change pose a significant threat to the persistence of many coastal plant species through exacerbating inundation, flooding, and erosion. In addition to sea level rise (SLR), climate changes in the form of air temperature and precipitation regimes will also alter habitats of coastal plant species. Although numerous studies have analyzed the effect of climate change on future habitats through species distribution models (SDMs), none have incorporated the threat of exposure to SLR. We developed a model that quantified the effect of both SLR and climate change on habitat for 88 rare coastal plant species in San Luis Obispo, Santa Barbara, and Ventura Counties, California, USA. Our SLR model projects that by the year 2100, 60 of the 88 species will be threatened by SLR. We found that the probability of being threatened by SLR strongly correlates with a species’ area, elevation, and distance from the coast, and that ten species could lose their entire current habitat in the study region. We modeled the habitat suitability of these 10 species under future climate using a species distribution model (SDM). Our SDM projects that 4 of the 10 species will lose all suitable current habitats in the region as a result of climate change. While SLR accounts for up to 9.2 km2 loss in habitat, climate change accounts for habitat suitability changes ranging from a loss of 1439 km2 for one species to a gain of 9795 km2 for another species. For three species, SLR is projected to reduce future suitable area by as much as 28% of total area. This suggests that while SLR poses a higher risk, climate changes in precipitation and air temperature represents a lesser known but potentially larger risk and a small cumulative effect from both.


Ocean Science ◽  
2010 ◽  
Vol 6 (1) ◽  
pp. 311-329 ◽  
Author(s):  
R. A. Ibrayev ◽  
E. Özsoy ◽  
C. Schrum ◽  
H. İ. Sur

Abstract. A three-dimensional primitive equation model including sea ice thermodynamics and air-sea interaction is used to study seasonal circulation and water mass variability in the Caspian Sea under the influence of realistic mass, momentum and heat fluxes. River discharges, precipitation, radiation and wind stress are seasonally specified in the model, based on available data sets. The evaporation rate, sensible and latent heat fluxes at the sea surface are computed interactively through an atmospheric boundary layer sub-model, using the ECMWF-ERA15 re-analysis atmospheric data and model generated sea surface temperature. The model successfully simulates sea-level changes and baroclinic circulation/mixing features with forcing specified for a selected year. The results suggest that the seasonal cycle of wind stress is crucial in producing basin circulation. Seasonal cycle of sea surface currents presents three types: cyclonic gyres in December–January; Eckman south-, south-westward drift in February–July embedded by western and eastern southward coastal currents and transition type in August–November. Western and eastern northward sub-surface coastal currents being a result of coastal local dynamics at the same time play an important role in meridional redistribution of water masses. An important part of the work is the simulation of sea surface topography, yielding verifiable results in terms of sea level. The model successfully reproduces sea level variability for four coastal points, where the observed data are available. Analyses of heat and water budgets confirm climatologic estimates of heat and moisture fluxes at the sea surface. Experiments performed with variations in external forcing suggest a sensitive response of the circulation and the water budget to atmospheric and river forcing.


Sign in / Sign up

Export Citation Format

Share Document