scholarly journals Emerging role of cell-free DNA in kidney transplantation

2021 ◽  
Vol 11 (5) ◽  
pp. 55-65
Author(s):  
Bhavna Chopra ◽  
Kalathil K Sureshkumar
Author(s):  
Lorenzo Gerratana ◽  
Andrew A. Davis ◽  
Ami N. Shah ◽  
Chenyu Lin ◽  
Carla Corvaja ◽  
...  
Keyword(s):  

2021 ◽  
Vol 17 (1) ◽  
pp. 12-17
Author(s):  
Yang Zhou ◽  
Dongrui Cheng ◽  
Tingya Jiang

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Brian C.-H. Chiu ◽  
Chang Chen ◽  
Qiancheng You ◽  
Rudyard Chiu ◽  
Girish Venkataraman ◽  
...  

AbstractThe 5-methylcytosines (5mC) have been implicated in the pathogenesis of diffuse large B-cell lymphoma (DLBCL) and follicular lymphoma (FL). However, the role of 5-hydroxymethylcytosines (5hmC) that are generated from 5mC through active demethylation, in lymphomagenesis is unknown. We profiled genome-wide 5hmC in circulating cell-free DNA (cfDNA) from 73 newly diagnosed patients with DLBCL and FL. We identified 294 differentially modified genes between DLBCL and FL. The differential 5hmC in the DLBCL/FL-differentiating genes co-localized with enhancer marks H3K4me1 and H3K27ac. A four-gene panel (CNN2, HMG20B, ACRBP, IZUMO1) robustly represented the overall 5hmC modification pattern that distinguished FL from DLBCL with an area under curve of 88.5% in the testing set. The median 5hmC modification levels in signature genes showed potential for separating patients for risk of all-cause mortality. This study provides evidence that genome-wide 5hmC profiles in cfDNA differ between DLBCL and FL and could be exploited as a non-invasive approach.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Marina S. Konkova ◽  
Andrew A. Kaliyanov ◽  
Vasilina A. Sergeeva ◽  
Margarita S. Abramova ◽  
Svetlana V. Kostyuk

In pathology or under damaging conditions, the properties of cell-free DNA (cfDNA) change. An example of such change is GC enrichment, which drastically alters the biological properties of cfDNA. GC-rich cfDNA is a factor of stress signaling, whereas genomic cfDNA is biologically inactive. GC-rich cfDNA stimulates TLR9-MyD88-NF-κB signaling cascade, leading to an increase in proinflammatory cytokine levels in the organism. In addition, GC-rich DNA is prone to oxidation and oxidized cfDNA can stimulate secondary oxidative stress. This article is a review of works dedicated to the investigation of a low-dose ionizing radiation effect, a bystander effect, and the role of cfDNA in both of these processes.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3806-3806
Author(s):  
Muhua Cao ◽  
Ruishuang Ma ◽  
Xiaoming Wu ◽  
Lixiu Wang ◽  
Lu Zhao ◽  
...  

Abstract Introduction:Despite treatment with all-trans-retinoic acid, the early death rate in unselected acute promyelocytic leukemia (APL) due to hemorrhage still remains unacceptably high. It is attractive to speculate whether other uncovered procoagulants exist which are not attenuated by ATRA. We have recently demonstrated that APL cells undergo a novel cell death program, termed ETosis, which involves release of extracellular chromatin (Ma R et al, Cell Death Dis 2016). However, the role of promyelocytic extracellular chromatin in APL-associated coagulation disorder remains unclear. The aims of this study were to identify the novel role of extracellular chromatin in induction of the hypercoagulable state in APL, and to evaluate its interaction with fibrin and endothelial cells (ECs). Methods:Twenty-two newly diagnosed APL patients were included. Fresh APL blasts from bone marrow specimens were treated with 1 μM ATRA or phosphate buffered saline (PBS). ETosis was distinguished by rounded cells whose nuclei stained with PI and whose nuclear contents diffused throughout the cell. Cell-free DNA (cf-DNA) was quantified using the Quant-iT PicoGreen dsDNA Assay Kit. Elastase-DNA complexes and TAT (thrombin-antithrombin) complexes were detected by ELISA. ECs were incubated in growth media containing 20% pooled serum obtained from healthy donors in the presence or absence of 20-fold concentrated extracellular chromatin. Procoagulant activity (PCA) of ECs and APL cells was evaluated by one-stage recalcification time assay, pro-thrombinase assay and fibrin formation assay. DNase I or anti-TF were included in the inhibition assays. Results: ATRA treatment induced markedly increased cf-DNA release in a time-dependent manner compared with no ATRA group. Furthermore, ETosis was the major cell death pattern in the ATRA-treated group while apoptosis was predominant in the no-treatment group until the third day, indicating that the increased cell-free DNA triggered by ATRA was mainly from ETosis. NE-DNA, defined as marker of ETosis, peaked on day 3 and showed no significant elevation to day 5, indicating that increased part of cf-DNA from day 3 to day 5 was mainly from apoptosis. Additionally, thrombin generation was found to parallel the change in the releasing of promyelocytic extracellular chromatin induced by ATRA. Pretreatment with DNase I inhibited thrombin generation by 47%, diminished PCA by 35%, prolonged coagulation time, and attenuated fibrin formation by 50%, while neutralizing anti-TF antibody produced no effect. Confocal microscopy showed that fibrin was preferentially deposited on promyelocytic chromatin from ETosis or apoptosis and exposed PS. Lastly, we found that extracellular chromatin from the ATRA group significantly triggered PS exposure on ECs, converting them to a pro-coagulant phenotype. This cytotoxity was blocked by DNase I by 20% or activated protein C (APC) by 31% indicating that DNA scaffold and histones were both necessary for the cytotoxic effect of extracellular chromatin. Conclusions:ATRA promotes procoagulant promyelocytic extracellular chromatin mainly through ETosis. Extracellular chromatin fosters excess thrombin generation, increases fibrin deposition, and causes endothelium damage. To improve the remaining coagulation disturbance in APL patients of high risks during ATRA administration, therapeutic strategies focusing on combined application of DNase I and APC to accelerate the degradation of overwhelmed promyelocytic extracellular chromatin would be of great interest in the future. Disclosures No relevant conflicts of interest to declare.


2013 ◽  
Vol 30 ◽  
pp. 194-194
Author(s):  
B. F. Gruenbaum ◽  
M. Boyko ◽  
A. Leibowitz ◽  
R. Kutz ◽  
A. Zlotnik

Sign in / Sign up

Export Citation Format

Share Document