Antibacterial Activity of Harpagophytum procumbens (Burch.) DC. ex Meisn. Root Extracts against Gastrointestinal Pathogens and Bacterial Triggers of Autoimmune Diseases

2021 ◽  
Vol 12 (1) ◽  
pp. 14-22
Author(s):  
Alysha Bromley ◽  
Ian E Cock
2021 ◽  
Vol 2021 ◽  
pp. 1-23
Author(s):  
Luay Rashan ◽  
Alan White ◽  
Manon Haulet ◽  
Nicolas Favelin ◽  
Parag Das ◽  
...  

The emergence of MDR bacterial pathogens has directed antibiotic discovery research towards alternative therapies and traditional medicines. Boswellia sacra oleoresin (frankincense) was used to treat bacterial infections in traditional Arabian and Asian healing systems for at least 1000 years. Despite this, B. sacra extracts have not been rigorously tested for inhibitory activity against gastrointestinal pathogens or bacterial triggers of autoimmune diseases. Solvent extracts were prepared from Boswellia sacra oleoresins obtained from three regions near Salalah, Oman. MIC values were quantified against gastrointestinal pathogens and bacterial triggers of selected autoimmune diseases by disc diffusion and broth dilution methods. The antibacterial activity was also evaluated in combination with conventional antibiotics, and the class of interaction was determined by ΣFIC analysis. Isobolograms were used to determine the optimal ratios for synergistic combinations. Toxicity was evaluated by ALA and HDF cell viability bioassays. The phytochemical composition of the volatile components of all extracts was identified by nontargeted GC-MS headspace analysis. All methanolic extracts inhibited the growth of all of the bacteria tested, although the extracts prepared using Najdi oleoresin were generally more potent than the Sahli and Houjari extracts. Combinations of the methanolic B. sacra extracts and conventional antibiotics were significantly more effective in inhibiting the growth of several bacterial pathogens. In total, there were 38 synergistic and 166 additive combinations. Approximately half of the synergistic combinations contained tetracycline. All B. sacra extracts were nontoxic in the ALA and HDF cell viability assays. Nonbiased GC-MS headspace analysis of the methanolic extracts putatively identified a high diversity of monoterpenoids, with particularly high abundances of α-pinene. The antibacterial activity and lack of toxicity of the B. sacra extracts indicate their potential in the treatment and prevention of gastrointestinal and autoimmune diseases. Furthermore, the extracts potentiated the activity of several conventional antibiotics, indicating that they may contain resistance-modifying compounds.


2017 ◽  
Vol 7 (4) ◽  
pp. 420 ◽  
Author(s):  
Adriana Favaretto ◽  
Fabiana Tonial ◽  
Charise Dallazem Bertol ◽  
Simone Meredith Scheffer-Basso

This study aimed to evaluate tough lovegrass leaf and root extracts antimicrobial activity. The extracts (plant material: solvent, 1:10) were prepared by maceration with methanol:water (1:1) during ten days followed by a concentration in a rotary evaporator under reduced pressure. The extracts were resuspended in water containing 1% of dimethylsulfoxide (DMSO) to obtain a final concentration of 100 mg/mL and then filtered through a sterilizing membrane with 0.22μm. The antibacterial activity of the leaf and root extracts were evaluated against pathogenic and phytopathogenic bacteria by agar well diffusion and microdilution broth methods for the minimum inhibitory concentrations (MIC) determination. The antifungal activity of tough lovegrass leaf and root extracts were evaluated by micelial growth inhibition and conidial germination inhibition. The extracts presented low antibacterial activity against Staphylococcus aureus, Staphylococcus epidermidis, and Xanthomonas translucens, but the leaf extracts presented significant antifungal activity against the phytopathogenic fungus Drechslera tritici-repentis. The results support the continuity of the study in improving the effectiveness of the active extract for a possible use in pharmacology and agronomy and in attempting to determine the probable active antimicrobial compound.


2020 ◽  
Vol 16 (8) ◽  
pp. 1215-1224
Author(s):  
Saïd Barek ◽  
Mohammed N. Rahmoun ◽  
Mohammed Aissaoui ◽  
Chawki Bensouici ◽  
Imad A. El Haci ◽  
...  

Background: Glycyrrhiza glabra L. is an important medicinal plant endowed with various pharmacological virtues. This study aimed to investigate the antioxidant, antibacterial, and anticholinesterase activities of the Algerian Glycyrrhiza glabra L. roots extracts. Methods: The chemical composition of both chloroformic (LCh) and ethyl acetate (LAE) extracts were analyzed by RP-HPLC-PDA and 1H NMR spectroscopy. The antioxidant activity was evaluated using hydrogen atoms transfer methods (DPPH) and single electron transfer (ABTS and CUPRAC assays). The antibacterial activity was realized against different strains via the Minimal Inhibitory Concentration (MIC), when the anticholinesterase activity was performed through the acetylcholinesterase and butyrylcholinesterase enzymes inhibition. Results: The chemical analysis revealed the presence of phenolic acids (gallic acid, p-coumaric acid) and a hydroxycinnamic compound (ferulic acid). However, flavonoids were represented by quercetin, rutin (flavonol), and glabridin (isoflavane). The 1H NMR of the L4 fraction from LCh extract allowed to characterize the structure of glabridin. : The antioxidant assays revealed that LCh extract is the best among other extracts with IC50 DPPH of 33.94 μg/mL, IC50 ABTS of 3.45 μg/mL and CUPRAC A0.5 of 21.78 μg/mL. The LCh extract displayed an effective antibacterial activity with MIC’s of 19.5 μg/mL against seven gram positive and negative bacteria strains. The same extract showed a potent butyrylcholinesterase inhibitory activity with IC50= 4.72 ± 0.72 μg/mL, which is too strong than the standard drug. Conclusion: The study demonstrated that G. glabra root extracts had a high antibacterial, and free radical scavenging. It was also able to inhibit cholinesterase enzymes, which confirm the effectiveness of phytoconstituents present in the plant, especially flavonoids.


2013 ◽  
Vol 3 (2) ◽  
pp. 113-119 ◽  
Author(s):  
Himanshu Aggarwal ◽  
Gyanprakash . ◽  
Alka Rao ◽  
Vinod Chhokar

2009 ◽  
Vol 125 (1) ◽  
pp. 175-177 ◽  
Author(s):  
S. Puglisi ◽  
A. Speciale ◽  
R. Acquaviva ◽  
G. Ferlito ◽  
S. Ragusa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document