scholarly journals Stretching of the Super-Elastic Double-Helix Geon. Wheeler´s Thermal Geons as Quanta of Heat and Momentum. Bohm´s Diffusion and the Heating of the Solar Corona and Heating of the Earth - Geon Engineering. Milgrom-Verlinde Constant. Mareš - Šesták constant

2020 ◽  
Vol 12 (2) ◽  
pp. 12
Author(s):  
Jiri Stavek

In our approach we have combined knowledge of Old Masters (working in this field before the year 1905), New Masters (working in this field after the year 1905) and Dissidents under the guidance of Louis de Broglie and David Bohm. Based on the great works of Julian Schwinger and John Archibald Wheeler we will study properties of geons formed by fusion of two soft x-ray particles (dyons) in the Schwarzschild gravitation core in our Sun at temperature 16 * 106 K. There are now several Teams that are able to achieve this fusion temperature in their special instruments (Tokamak, HL-2M Tokamak, Wendelstein 7-X, NIF, etc.) and to study properties of those formed geons. Thermal geons are with us all the time but they are very deeply hidden in our experiments. We have newly introduced Mareš - Šesták constant as the ratio of geon momentum to heat quantum of geon. The key information to enter into the World of geons was the empirical formula of David Bohm - the very well-known Bohm diffusion. From this formula we have extracted the amplitude, wavelength, frequency, quantum of the geon action, displacement law for geons, etc. It was found that geons are highly sensitive to the magnetic field strength. At a low magnetic field strength, the “inflation of geons” can occur. This effect could explain the Superheating of the Solar corona and the observed Heating of the Earth during two last centuries influenced by the changes in the Earth´s magnetic field. Geon engineering might modify the geon volume through the magnetic field strength. On the other hand, we were stimulated by the works of Mordehai Milgrom and Eric Verlinde and derived the Milgrom-Verlinde constant describing the gravitational field strength leading to the Newtonian gravitational constant on thermodynamic principles. The quantum of the geon momentum might open a new way how to understand gravitational phenomena. Can it be that Nature cleverly inserted geons into our experimental apparatuses and into our very-well known Old Formulae? We want to pass this concept into the hands of Readers of this Journal better educated in the Mathematics, Physics, and Thermodynamics.

2004 ◽  
Vol 2004 (IAUS223) ◽  
pp. 453-454 ◽  
Author(s):  
A.B. Delone ◽  
G.A. Porfir'eva ◽  
O.B. Smirnova ◽  
G.V. Yakunina

2001 ◽  
Vol 19 (10/12) ◽  
pp. 1711-1720 ◽  
Author(s):  
J. G. Trotignon ◽  
P. M. E. Décréau ◽  
J. L. Rauch ◽  
O. Randriamboarison ◽  
V. Krasnoselskikh ◽  
...  

Abstract. The Wave Experiment Consortium, WEC, is a highly integrated package of five instruments used to study the plasma environment around the Earth. One of these instruments, the Waves of HIgh frequency and Sounder for Probing of Electron density by Relaxation, Whisper, aims at the thermal electron density evaluation and natural wave monitoring in the 4–83 kHz frequency range. In its active working mode, which is our primarily concern here, the Whisper instrument transmits a short wave train at a swept frequency and receives echoes after a delay. Incidentally, it behaves like a classical ground-based ionosonde. Natural modes of oscillations may thus be excited in the surrounding medium. This means that with suitable interpretations, the Whisper sounding technique becomes a powerful tool for plasma diagnosis. By taking into account the characteristic frequencies of the magnetoplasmas encountered by the Cluster spacecraft, it is indeed possible to reliably and accurately determine the electron density and, to a lesser degree, the magnetic field strength from the Whisper electric field measurements. Due to the predominantly electrostatic nature of the waves that are excited, observations of resonances may also lead to information on the electron velocity distribution functions. The existence of a hot population may indeed be revealed and the hot to cold density ratio can be estimated.Key words. Magnetospheric physics (plasma waves and instabilities). Space plasma physics (active perturbation experiments; instruments and techniques)


2020 ◽  
Vol 898 (2) ◽  
pp. L34 ◽  
Author(s):  
Ran Si ◽  
Tomas Brage ◽  
Wenxian Li ◽  
Jon Grumer ◽  
Meichun Li ◽  
...  

1990 ◽  
Vol 140 ◽  
pp. 20-20
Author(s):  
J.T. Schmelz

The Coronal Magnetic Structures Observing Campaign (CoMStOC) was designed to measure the magnetic field strength and determine its structure in the solar corona. Simultaneous soft X-ray and microwave data separate the contributions of the two dominant microwave emission mechanisms - gyroresonance and thermal bremsstrahlung. Where gyroresonance dominates, the magnetic field can be determined.


Solar Physics ◽  
2013 ◽  
Vol 288 (2) ◽  
pp. 567-583 ◽  
Author(s):  
D. M. Long ◽  
D. R. Williams ◽  
S. Régnier ◽  
L. K. Harra

1976 ◽  
Vol 32 ◽  
pp. 613-622
Author(s):  
I.A. Aslanov ◽  
Yu.S. Rustamov

SummaryMeasurements of the radial velocities and magnetic field strength of β CrB were carried out. It is shown that there is a variability with the rotation period different for various elements. The curve of the magnetic field variation measured from lines of 5 different elements: FeI, CrI, CrII, TiII, ScII and CaI has a complex shape specific for each element. This may be due to the presence of magnetic spots on the stellar surface. A comparison with the radial velocity curves suggests the presence of a least 4 spots of Ti and Cr coinciding with magnetic spots. A change of the magnetic field with optical depth is shown. The curve of the Heffvariation with the rotation period is given. A possibility of secular variations of the magnetic field is shown.


2018 ◽  
Vol 615 ◽  
pp. A35 ◽  
Author(s):  
De-Fu Bu ◽  
Amin Mosallanezhad

Context. Observations indicate that wind can be generated in hot accretion flow. Wind generated from weakly magnetized accretion flow has been studied. However, the properties of wind generated from strongly magnetized hot accretion flow have not been studied. Aims. In this paper, we study the properties of wind generated from both weakly and strongly magnetized accretion flow. We focus on how the magnetic field strength affects the wind properties. Methods. We solve steady-state two-dimensional magnetohydrodynamic equations of black hole accretion in the presence of a largescale magnetic field. We assume self-similarity in radial direction. The magnetic field is assumed to be evenly symmetric with the equatorial plane. Results. We find that wind exists in both weakly and strongly magnetized accretion flows. When the magnetic field is weak (magnetic pressure is more than two orders of magnitude smaller than gas pressure), wind is driven by gas pressure gradient and centrifugal forces. When the magnetic field is strong (magnetic pressure is slightly smaller than gas pressure), wind is driven by gas pressure gradient and magnetic pressure gradient forces. The power of wind in the strongly magnetized case is just slightly larger than that in the weakly magnetized case. The power of wind lies in a range PW ~ 10−4–10−3 Ṁinc2, with Ṁin and c being mass inflow rate and speed of light, respectively. The possible role of wind in active galactic nuclei feedback is briefly discussed.


2003 ◽  
Vol 13 (12) ◽  
pp. 3783-3789 ◽  
Author(s):  
F. E. SMITH ◽  
P. LANGLEY ◽  
L. TRAHMS ◽  
U. STEINHOFF ◽  
J. P. BOURKE ◽  
...  

Multichannel magnetocardiography measures the magnetic field distribution of the human heart noninvasively from many sites over the body surface. Multichannel magnetocardiogram (MCG) analysis enables regional temporal differences in the distribution of cardiac magnetic field strength during depolarization and repolarization to be identified, allowing estimation of the global and local inhomogeneity of the cardiac activation process. The aim of this study was to compare the spatial distribution of cardiac magnetic field strength during ventricular depolarization and repolarization in both normal subjects and patients with cardiac abnormalities, obtaining amplitude measurements by magnetocardiography. MCGs were recorded at 49 sites over the heart from three normal subjects and two patients with inverted T-wave conditions. The magnetic field intensity during depolarization and repolarization was measured automatically for each channel and displayed spatially as contour maps. A Pearson correlation was used to determine the spatial relationship between the variables. For normal subjects, magnetic field strength maps during depolarization (R-wave) showed two asymmetric regions of magnetic field strength with a high positive value in the lower half of the chest and a high negative value above this. The regions of high R-wave amplitude corresponded spatially to concentrated asymmetric regions of high magnetic field strength during repolarization (T-wave). Pearson-r correlation coefficients of 0.7 (p<0.01), 0.8 (p<0.01) and 0.9 (p<0.01) were obtained from this analysis for the three normal subjects. A negative correlation coefficient of -0.7 (p<0.01) was obtained for one of the subjects with inverted T-wave abnormalities, suggesting similar but inverted magnetic field and current distributions to normal subjects. Even with the high correlation values in these four subjects, the MCG was able to identify differences in the distribution of magnetic field strength, with a shift in the T-wave relative to the R-wave. The measurement of cardiac magnetic field distribution during depolarization and repolarization of normal subjects and patients with clinical abnormalities should enable the improvement of theoretical models for the explanation of the cardiac depolarization and repolarization processes.


2019 ◽  
Vol 21 (25) ◽  
pp. 13696-13705 ◽  
Author(s):  
Alexey S. Kiryutin ◽  
Bogdan A. Rodin ◽  
Alexandra V. Yurkovskaya ◽  
Konstantin L. Ivanov ◽  
Dennis Kurzbach ◽  
...  

The magnetic field strength during sample transfer in dissolution dynamic nuclear polarization influences the resulting spectra.


Sign in / Sign up

Export Citation Format

Share Document