scholarly journals How to determine the thermal electron density and the magnetic field strength from the Cluster/Whisper observations around the Earth

2001 ◽  
Vol 19 (10/12) ◽  
pp. 1711-1720 ◽  
Author(s):  
J. G. Trotignon ◽  
P. M. E. Décréau ◽  
J. L. Rauch ◽  
O. Randriamboarison ◽  
V. Krasnoselskikh ◽  
...  

Abstract. The Wave Experiment Consortium, WEC, is a highly integrated package of five instruments used to study the plasma environment around the Earth. One of these instruments, the Waves of HIgh frequency and Sounder for Probing of Electron density by Relaxation, Whisper, aims at the thermal electron density evaluation and natural wave monitoring in the 4–83 kHz frequency range. In its active working mode, which is our primarily concern here, the Whisper instrument transmits a short wave train at a swept frequency and receives echoes after a delay. Incidentally, it behaves like a classical ground-based ionosonde. Natural modes of oscillations may thus be excited in the surrounding medium. This means that with suitable interpretations, the Whisper sounding technique becomes a powerful tool for plasma diagnosis. By taking into account the characteristic frequencies of the magnetoplasmas encountered by the Cluster spacecraft, it is indeed possible to reliably and accurately determine the electron density and, to a lesser degree, the magnetic field strength from the Whisper electric field measurements. Due to the predominantly electrostatic nature of the waves that are excited, observations of resonances may also lead to information on the electron velocity distribution functions. The existence of a hot population may indeed be revealed and the hot to cold density ratio can be estimated.Key words. Magnetospheric physics (plasma waves and instabilities). Space plasma physics (active perturbation experiments; instruments and techniques)

2020 ◽  
Vol 12 (2) ◽  
pp. 12
Author(s):  
Jiri Stavek

In our approach we have combined knowledge of Old Masters (working in this field before the year 1905), New Masters (working in this field after the year 1905) and Dissidents under the guidance of Louis de Broglie and David Bohm. Based on the great works of Julian Schwinger and John Archibald Wheeler we will study properties of geons formed by fusion of two soft x-ray particles (dyons) in the Schwarzschild gravitation core in our Sun at temperature 16 * 106 K. There are now several Teams that are able to achieve this fusion temperature in their special instruments (Tokamak, HL-2M Tokamak, Wendelstein 7-X, NIF, etc.) and to study properties of those formed geons. Thermal geons are with us all the time but they are very deeply hidden in our experiments. We have newly introduced Mareš - Šesták constant as the ratio of geon momentum to heat quantum of geon. The key information to enter into the World of geons was the empirical formula of David Bohm - the very well-known Bohm diffusion. From this formula we have extracted the amplitude, wavelength, frequency, quantum of the geon action, displacement law for geons, etc. It was found that geons are highly sensitive to the magnetic field strength. At a low magnetic field strength, the “inflation of geons” can occur. This effect could explain the Superheating of the Solar corona and the observed Heating of the Earth during two last centuries influenced by the changes in the Earth´s magnetic field. Geon engineering might modify the geon volume through the magnetic field strength. On the other hand, we were stimulated by the works of Mordehai Milgrom and Eric Verlinde and derived the Milgrom-Verlinde constant describing the gravitational field strength leading to the Newtonian gravitational constant on thermodynamic principles. The quantum of the geon momentum might open a new way how to understand gravitational phenomena. Can it be that Nature cleverly inserted geons into our experimental apparatuses and into our very-well known Old Formulae? We want to pass this concept into the hands of Readers of this Journal better educated in the Mathematics, Physics, and Thermodynamics.


1976 ◽  
Vol 32 ◽  
pp. 613-622
Author(s):  
I.A. Aslanov ◽  
Yu.S. Rustamov

SummaryMeasurements of the radial velocities and magnetic field strength of β CrB were carried out. It is shown that there is a variability with the rotation period different for various elements. The curve of the magnetic field variation measured from lines of 5 different elements: FeI, CrI, CrII, TiII, ScII and CaI has a complex shape specific for each element. This may be due to the presence of magnetic spots on the stellar surface. A comparison with the radial velocity curves suggests the presence of a least 4 spots of Ti and Cr coinciding with magnetic spots. A change of the magnetic field with optical depth is shown. The curve of the Heffvariation with the rotation period is given. A possibility of secular variations of the magnetic field is shown.


2018 ◽  
Vol 615 ◽  
pp. A35 ◽  
Author(s):  
De-Fu Bu ◽  
Amin Mosallanezhad

Context. Observations indicate that wind can be generated in hot accretion flow. Wind generated from weakly magnetized accretion flow has been studied. However, the properties of wind generated from strongly magnetized hot accretion flow have not been studied. Aims. In this paper, we study the properties of wind generated from both weakly and strongly magnetized accretion flow. We focus on how the magnetic field strength affects the wind properties. Methods. We solve steady-state two-dimensional magnetohydrodynamic equations of black hole accretion in the presence of a largescale magnetic field. We assume self-similarity in radial direction. The magnetic field is assumed to be evenly symmetric with the equatorial plane. Results. We find that wind exists in both weakly and strongly magnetized accretion flows. When the magnetic field is weak (magnetic pressure is more than two orders of magnitude smaller than gas pressure), wind is driven by gas pressure gradient and centrifugal forces. When the magnetic field is strong (magnetic pressure is slightly smaller than gas pressure), wind is driven by gas pressure gradient and magnetic pressure gradient forces. The power of wind in the strongly magnetized case is just slightly larger than that in the weakly magnetized case. The power of wind lies in a range PW ~ 10−4–10−3 Ṁinc2, with Ṁin and c being mass inflow rate and speed of light, respectively. The possible role of wind in active galactic nuclei feedback is briefly discussed.


2003 ◽  
Vol 13 (12) ◽  
pp. 3783-3789 ◽  
Author(s):  
F. E. SMITH ◽  
P. LANGLEY ◽  
L. TRAHMS ◽  
U. STEINHOFF ◽  
J. P. BOURKE ◽  
...  

Multichannel magnetocardiography measures the magnetic field distribution of the human heart noninvasively from many sites over the body surface. Multichannel magnetocardiogram (MCG) analysis enables regional temporal differences in the distribution of cardiac magnetic field strength during depolarization and repolarization to be identified, allowing estimation of the global and local inhomogeneity of the cardiac activation process. The aim of this study was to compare the spatial distribution of cardiac magnetic field strength during ventricular depolarization and repolarization in both normal subjects and patients with cardiac abnormalities, obtaining amplitude measurements by magnetocardiography. MCGs were recorded at 49 sites over the heart from three normal subjects and two patients with inverted T-wave conditions. The magnetic field intensity during depolarization and repolarization was measured automatically for each channel and displayed spatially as contour maps. A Pearson correlation was used to determine the spatial relationship between the variables. For normal subjects, magnetic field strength maps during depolarization (R-wave) showed two asymmetric regions of magnetic field strength with a high positive value in the lower half of the chest and a high negative value above this. The regions of high R-wave amplitude corresponded spatially to concentrated asymmetric regions of high magnetic field strength during repolarization (T-wave). Pearson-r correlation coefficients of 0.7 (p<0.01), 0.8 (p<0.01) and 0.9 (p<0.01) were obtained from this analysis for the three normal subjects. A negative correlation coefficient of -0.7 (p<0.01) was obtained for one of the subjects with inverted T-wave abnormalities, suggesting similar but inverted magnetic field and current distributions to normal subjects. Even with the high correlation values in these four subjects, the MCG was able to identify differences in the distribution of magnetic field strength, with a shift in the T-wave relative to the R-wave. The measurement of cardiac magnetic field distribution during depolarization and repolarization of normal subjects and patients with clinical abnormalities should enable the improvement of theoretical models for the explanation of the cardiac depolarization and repolarization processes.


2019 ◽  
Vol 21 (25) ◽  
pp. 13696-13705 ◽  
Author(s):  
Alexey S. Kiryutin ◽  
Bogdan A. Rodin ◽  
Alexandra V. Yurkovskaya ◽  
Konstantin L. Ivanov ◽  
Dennis Kurzbach ◽  
...  

The magnetic field strength during sample transfer in dissolution dynamic nuclear polarization influences the resulting spectra.


1972 ◽  
Vol 50 (2) ◽  
pp. 116-118 ◽  
Author(s):  
C. W. T. Chien ◽  
R. E. Bardsley ◽  
F. W. Dalby

Zero-field level-crossing techniques have been used to measure some upper-state lifetimes of the helium atom. The half-widths of curves obtained by plotting the polarization against the magnetic field strength for the n1D–21D transitions yielded lifetimes of 2.03 × 10−8 s for the 31D state, 3.36 × 10−8 s for the 41D state, and 7.44 × 10−8 s for the 51D state. Collision cross sections for these 1D levels were also determined.


Minerals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 61
Author(s):  
Yakun Tian ◽  
Shulei Song ◽  
Xuan Xu ◽  
Xinyu Wei ◽  
Shanwen Yan ◽  
...  

The bed pressure drop, minimum fluidized gas velocity, bed density, and bed expansion rate are important parameters characterizing the fluidization characteristics of gas-solid fluidized beds. By analyzing these parameters, the advantages and disadvantages of the fluidization state can be known. In this study, experiments were conducted to study the fluidization characteristics of a gas-solid magnetically fluidized bed for microfine particles by changing the magnetic field strength, magnetic field addition sequence, and static bed height. The experimental results show that when the magnetic field strength increased from 0 KA/m to 5 KA/m, the minimum fluidized gas velocity of particles increased from 4.42 cm/s to 10.32 cm/s, while the bed pressure drop first increased and then decreased. When the magnetic field strength is less than 3.4 KA/m, the microfine particles in the bed are mainly acted on by the airflow; while when the magnetic field strength is greater than 3.4 KA/m, the microfine particles are mainly dominated by the magnetic field. The magnetic field addition sequence affects the fluidization quality of microfine particles. The fluidized bed with ‘adding magnetic field first’ shows a more stable fluidization state than ‘adding magnetic field later’. Increasing of the static bed height reduces the bed expansion rate. The bed expansion rate is up to 112.5% at a static bed height of h0 = 40 mm and H = 5 KA/m. This will broaden the range of density regulation of a single magnetic particle and lay the advantage of gas-solid magnetically fluidized bed for microfine particles in the field of separation of fine coal.


2021 ◽  
pp. 151-151
Author(s):  
Ruihao Zhang ◽  
Sixian Wang ◽  
Shan Qing ◽  
Zhumei Luo ◽  
Zhang Xiaohui

This paper focuses on the convective heat transfer characteristics of Fe3O4 /Water magnetic nanofluids under laminar and turbulent conditions. After verifying the accuracy of the experimental apparatus, the effects of magnetic field strength, concentration, Reynolds number and temperature on the convective heat transfer coefficient have been studied. The convective heat transfer characteristics of nanofluids under laminar and turbulent flow conditions were studied in depth, and the influence of each factor on the heat transfer coefficient was analyzed by orthogonal experimental design method. Under the laminar flow conditions, the convective heat transfer of magnetic nanofluids performed best when the Reynolds number was 2000, the magnetic field strength was 600, the temperature was 30? and the concentration was 2%. And the convective heat transfer coefficient (h) increased by 3.96% than the distilled water in the same conditions. In turbulent state, the convective heat transfer of magnetic nanofluids performed the best when the Re was 6000, the magnetic field strength was 600, the temperature was 40? and the concentration was 2%. The h increased by 11.31% than the distilled water in the same Reynolds number and the magnetic field strength conditions.


Sign in / Sign up

Export Citation Format

Share Document