scholarly journals Geochemical Characteristics and Tectonic Significance of the Acidic Volcanic Rocks from the Shetang-Boyang Area, Western Qinling Orogenic Belt, China

2016 ◽  
Vol 5 (2) ◽  
pp. 209
Author(s):  
Aiai Ma ◽  
Hao Guan ◽  
Lifei Zou ◽  
Lanlan Sun

Acidic volcanic rocks of Shetang-Boyang area are located in the western Qinling orogenic belt, consist of rhyolite and granite porphyry. They are comparable in the chemical composition, enriched in Si, alkali, Al and a little bit of Mg, Ca and Ti. The contents of HFSE (Zr, Hf) and LILE (Rb, Th, U) are high, however, the content of Ba, Sr, Ti, P have obviously depleted and there are obvious negative Eu anomalies (Eu/Eu*=0.06-0.13). These geochemical characteristics are revealed that these volcanic rocks have an A1 type affinity. Geochemical data combined with regional studies, show that these volcanic rocks were formed in a continental extension setting and the western Qinling orogenic belt in 211Ma has been in the tectonic setting of post-collisional extension.

2019 ◽  
Vol 132 (5-6) ◽  
pp. 1257-1272 ◽  
Author(s):  
Yun-Chuan Zeng ◽  
Ji-Feng Xu ◽  
Feng Huang ◽  
Ming-Jian Li ◽  
Qin Chen

Abstract Successively erupted intermediate-felsic rocks with variations in their geochemical compositions indicate physical changes in lower-crust conditions, and the variations can provide important insights into the regional tectonic setting. What triggered the late Early Cretaceous tectonic transition of the central-north Lhasa Terrane remains controversial, hindering the understanding of the mechanisms behind the formation of the central Tibetan Plateau. The sodic Dagze volcanic rocks in the north Lhasa Terrane are characterized by high contents of SiO2 and Na2O, low contents of MgO, Fe2O3, and K2O, and low values of Mg#. However, the trace element compositions of the whole-rocks and their zircons allow the rocks to be divided into two groups. The Group I rocks (ca. 105 Ma) have higher contents of Sr and Ba, higher Sr/Y and La/Yb ratios, and lower contents of Y, Yb, Ti, and Zr than Group II rocks (ca. 100 Ma). Besides, the zircons from Group I rocks have higher values of Yb/Gd and U/Yb, lower values of Th/U, and lower Ti contents than the zircons from Group II rocks. However, the rocks of both groups have identical depleted whole-rock Sr-Nd and zircon Hf isotope values. The geochemical data indicate that rocks of both groups were generated by partial melting of a juvenile lower crust, but the differences in the two groups reflect a transition from deep-cold melting to relatively shallower-hotter melting in the period from ca. 105 to 100 Ma. This transition was synchronous with the rapid cooling of granitoids, topographic uplift, and the shutdown of magmatism in the central-north Lhasa Terrane, and followed by sedimentation and the resumption of magmatism in the south Lhasa Terrane. The above observations collectively indicate that the central-north Lhasa Terrane was under an extensional setting in late Early Cretaceous, and we tentatively suggest that it was in response to lithospheric drip during roll-back of the northward-subducting Neo-Tethyan oceanic plate.


1995 ◽  
Vol 132 (5) ◽  
pp. 549-556 ◽  
Author(s):  
E. R. Phillips ◽  
R. P. Barnes ◽  
R. J. Merriman ◽  
J. D. Floyd

AbstractIn the northern part of the Southern Uplands, restricted volumes of basic igneous rocks occur at or near the base of the Ordovician sedimentary strata. These rocks have previously been interpreted as ocean-floor tholeiites representative of the subducted Iapetus oceanic plate, preserved as tectonic slivers in a fore-arc accretionary prism. The alternative, back-arc basin model proposed for the Southern Uplands on sedimentological evidence raises questions over the origin of these rocks. New geochemical data and previously published data clearly indicate that the volcanic material does not have a simple single source. The oldest (Arenig) volcanic rocks from the Moffat Shale Group associated with the Leadhills Fault include alkaline within-plate basalts and tholeiitic lavas which possibly display geochemical characteristics of midocean ridge basalts. In the northernmost occurrence, alkaline and tholeiitic basalts contained within the Caradoc Marchburn Formation are both of within-plate ocean island affinity. To the south, in the Gabsnout Burn area, the Moffat Shale Group contains lenticular bodies of dolerite and basalt which have characteristics of island-arc to transitional basalts. This complex association of basaltic volcanic rocks is, at the present time, difficult to reconcile with either a simple fore-arc or back-arc setting for the Southern Uplands. However, the increasing arc-related chemical influence on basic rock geochemistry towards the southeast may tentatively be used in support of a southern arc-terrane, and as a result, a back-arc situation for the Southern Uplands basin. An alternative is that these volcanic rocks may represent the local basement to the basin and include remnants of an arc precursor to the Southern Uplands basin.


1984 ◽  
Vol 21 (4) ◽  
pp. 415-427 ◽  
Author(s):  
Kent C. Condie ◽  
Craig A. Shadel

The Green Mountain Formation of early Proterozoic age in the Sierra Madre Range of southeastern Wyoming comprises a bimodal mafic and felsic volcanic assemblage. The rocks, which are chiefly breccias, agglomerates, flows, and volcaniclastic sediments, represent both subaerial and submarine eruptions and in part were redeposited in fluvial and nearshore marine environments. Volcanic rocks are clearly calc-alkaline in character and share a large number of geochemical features in common with continental-margin arcs or evolved oceanic-arc systems.The low Mg numbers and Ni contents of the basalts require 30–40% olivine fractional crystallization, and the high contents of the most incompatible elements, high (La/Sm)N ratios, and low Zr/Nb ratios require an undepleted or enriched mantle source. Geochemical data are consistent with an origin for the felsic volcanics and associated Encampment River granodiorite by shallow fractional crystallization of calc-alkaline basalt in a tectonic setting similar to modern arc systems. The near absence of andesites may reflect the retention of andesitic magma in crustal reservoirs during fractional cyrstallization.


2007 ◽  
Vol 52 (21) ◽  
pp. 3002-3010 ◽  
Author(s):  
HongLiang Wang ◽  
Liang Chen ◽  
Yong Sun ◽  
XiaoMing Liu ◽  
XueYi Xu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document