scholarly journals Evaluating the Viability of Lactic Acid Bacteria and Nutritional Quality of Hibiscus Sabdariffa Stored Under Natural Condition

2014 ◽  
Vol 7 (1) ◽  
Author(s):  
Eguono Esther Anomohanran
2014 ◽  
Vol 95 (6) ◽  
pp. 1336-1342 ◽  
Author(s):  
Elena Bartkiene ◽  
Vita Krungleviciute ◽  
Grazina Juodeikiene ◽  
Daiva Vidmantiene ◽  
Zita Maknickiene

Author(s):  
Fanfan Zhang ◽  
Fang Miao ◽  
Xuzhe Wang ◽  
Weihua Lu ◽  
Chunhui Ma

This study aimed to investigate the effects of homo/heterofermentative lactic acid bacteria (LAB) on the quality of corn silage and its rumen digestibility. Maize (Zea mays strain Xingsiyu No. 10), at the early dough stage, was harvested, chopped, ensiled in vacuum bags and divided into four groups: 1) control (without added bacteria); 2) with the homofermentative LAB Lactobacillus plantarum and Pediococcus pentosaceus (1:1 mixture, 1 × 105 cfu g-1); 3) with the heterofermentative LAB Lactobacillus buchneri (1 × 105 cfu g-1); and 4) with the homo/heterofermentative LAB L. plantarum, P. pentosaceus, and L. buchneri (1:1:1 mixture). At 2, 8, 15, 45, and 60 d of ensiling, nutritional quality, fermentation characteristics, and microbial content were assessed. After 60 d, aerobic stability and rumen digestibility tests were performed. The addition of homo- and/or heterofermentative LAB significantly improved the nutritional quality, fermentation characteristics, and microbial content. Addition of the heterofermenter L. buchneri, with or without the homofermenters L. plantarum and P. pentosaceus, improved aerobic stability. The different LAB inoculants increased the degradation rates of dry matter, acid detergent fiber, and neutral detergent fiber of the corn silage by sheep ruminants. Analysis indicated that L. buchneri yielded the best corn silage.


Author(s):  
Sara Simões ◽  
Rafaela Santos ◽  
Andreia Bento‐Silva ◽  
Marisa V. Santos ◽  
Mariana Mota ◽  
...  

2014 ◽  
Vol 34 (3) ◽  
pp. 169-173 ◽  
Author(s):  
Mayakrishnan Vijayakumar ◽  
Soundarrajan Ilavenil ◽  
Mariadhas Valan Arasu ◽  
Min-Woong Jung ◽  
Hyung Soo Park ◽  
...  

2019 ◽  
pp. 1-8 ◽  
Author(s):  
E. C. Cheruiyot ◽  
S. K. Mbugua ◽  
M. W. Okoth ◽  
O. G. Abong ◽  
D. M. Kaindi

Most of the products of maize flour fermentation in Kenya undergo wild fermentation in a natural process. One of these is locally roasted maize flour commonly known by its local name Mkarango which is popular in the Western region of Kenya where it is used in different ways. Mkarango is mostly made through wild fermentation which is known to pose health risks as it is unhygienic and time-consuming, with the quality of the resultant product being inconsistent. The aim of this study was to evaluate the population of lactic acid bacteria, and sensory characteristics of dried roasted thick porridge (mkarango). Six different mkarango products made with addition of Lactobacillus plantarum and Lactobacillus brevis in different ratios were studied for microbial quality, mineral element content and sensory characteristics. Titratable acidity and pH properties of the products were also determined. These were done following recommended standards. After 24 hours of fermentation, products with Yeast+ L. plantarum+ L. brevis (1:2) and Milk+ L. plantarum+ L. brevis (1:2) had the highest pH values (5.12) while products with Milk+ L. plantarum+ L. brevis (2:1) had the lowest pH values (4.8). Yeast, molds, and Lactic Acid Bacteria had the highest in all the samples tested while Enterobacteriaceae the least. The overall acceptability of the product of the product prepared from Milk + L. plantarum + L. brevis (2:1) had the final score of 4.7 on the 5-point hedonic scale. The results of the trace elements zinc and iron ranged from 2.7 mg/100 g to 3.9 mg/100 g and 2.7 mg/100 g to 16.9 mg/100 g on the product respectively. Fermentation creates an environment that is conducive for the population of lactic acid bacteria. This results in increased volume of lactic acid that is responsible for improved nutritional quality of Mkarango.


2021 ◽  
Vol 9 (5) ◽  
pp. 1044
Author(s):  
Jeong A Kim ◽  
Geun Su Kim ◽  
Se Mi Choi ◽  
Myeong Seon Kim ◽  
Do Young Kwon ◽  
...  

Hardening of cheese is one of major issues that degrade the quality of Home Meal Replacement (HMR) foods containing cheese such as Cheese-ddukbokki rice cake (CD, stir-fried rice cakes with shredded cheese). The quality of cheese, such as pH, proteolytic, and flavor properties, depends on various lactic acid bacteria (LAB) used in cheese fermentation. The hardening of cheese is also caused by LAB. In this study, various LAB strains were isolated from CD samples that showed rapid hardening. The correlation of LAB with the hardening of cheese was investigated. Seven of the CD samples with different manufacturing dates were collected and tested for hardening properties of cheese. Among them, strong-hardening of cheese was confirmed for two samples and weak-hardening was confirmed for one sample. All LAB in two strong-hardening samples and 40% of LAB in one weak-hardening sample were identified as Latilactobacillus curvatus. On the other hand, most LAB in normal cheese samples were identified as Leuconostoc mesenteroides and Lactobacillus casei. We prepared cheese samples in which L. curvatus (LC-CD) and L. mesenteroides (LM-CD) were most dominant, respectively. Each CD made of the prepared cheese was subjected to quality test for 50 days at 10 °C. Hardening of cheese with LC-CD dominant appeared at 30 days. However, hardening of cheese with LM-CD dominant did not appear until 50 days. The pH of the LC-CD was 5.18 ± 0.04 at 30 days, lower than that of LM-CD. The proteolytic activity of LC-CD sample was 2993.67 ± 246.17 units/g, higher than that of LM-CD sample (1421.67 ± 174.5 units/g). These results indicate that high acid production and high protease activity of L. curvatus might have caused hardening of cheese.


2008 ◽  
Vol 71 (8) ◽  
pp. 1724-1733 ◽  
Author(s):  
SUSAN ROUSE ◽  
DOUWE VAN SINDEREN

Lactic acid bacteria (LAB) are naturally associated with many foods or their raw ingredients and are popularly used in food fermentation to enhance the sensory, aromatic, and textural properties of food. These microorganisms are well recognized for their biopreservative properties, which are achieved through the production of antimicrobial compounds such as lactic acid, diacetyl, bacteriocins, and other metabolites. The antifungal activity of certain LAB is less well characterized, but organic acids, as yet uncharacterized proteinaceous compounds, and cyclic dipeptides can inhibit the growth of some fungi. A variety of microbes are carried on raw materials used in beer brewing, rendering the process susceptible to contamination and often resulting in spoilage or inferior quality of the finished product. The application of antimicrobial-producing LAB at various points in the malting and brewing process could help to negate this problem, providing an added hurdle for spoilage organisms to overcome and leading to the production of a higher quality beer. This review outlines the bioprotective potential of LAB and its application with specific reference to the brewing industry.


2017 ◽  
Vol 17 (1) ◽  
pp. 5
Author(s):  
Agus Safari ◽  
Sarah Fahma Ghina ◽  
Sadiah Djajasoepena ◽  
O. Suprijana ' ◽  
Ida Indrawati ◽  
...  

Mixed lactic acid bacteria culture is commonly used in yogurt production. In the present study, two lactic acid bacteria (Lactobacillus bulgaricus and Streptococcus thermophillus) was used as starter culture. Calcium carbonate was added to the starter culture to increase the quality of mixed starter culture of L. bulgaricus and S. thermophillus with ratio of 4:1. The present study was directed to investigate the chemical composition of mixed starter culture with and without calcium carbonat addition. Furthermore, the effect of each starter culture on yogurt product chemical composition was also examined. The pH, lactose, soluble protein and acid content was determined as chemical composition parameters. For starter culture without calcium carbonate addition, the yogurt has pH, lactose, soluble protein and acid content of 4.18–4.39, 4.18–4.39% w/v, 2.88–4.36% w/v and 0.82–0.99% w/v, respectively. While for starter culture with calcium carbonate addition, the yogurt product has pH, lactose, soluble protein and acid content of 4.26–4.37, 1.47–1.75% b/v, 3.42–4.95% w/v and 0.86–1.11% w/v, respectively. Addition of 0.05% w/v calcium carbonate to mixed starter culture gave effect on lactose consumption, where it still can convert lactose to lactic acid up to 45 days of storage. Furthermore, the yogurt product made with starter culture with calcium carbonate addition has higher soluble protein content compared to yogurt made with starter culture without calcium carbonate addition


Sign in / Sign up

Export Citation Format

Share Document