scholarly journals The Generalized Additive Weibull-G Family of Distributions

2017 ◽  
Vol 6 (5) ◽  
pp. 65 ◽  
Author(s):  
Amal S. Hassan ◽  
Saeed E. Hemeda ◽  
Sudhansu S. Maiti ◽  
Sukanta Pramanik

In this paper, we present a new family, depending on additive Weibull random variable as a generator, called the generalized additive Weibull generated-family (GAW-G) of distributions with two extra parameters. The proposed family involves several of the most famous classical distributions as well as the new generalized Weibull-G family which already accomplished by Cordeiro et al. (2015). Four special models are displayed. The expressions for the incomplete and ordinary moments, quantile, order statistics, mean deviations, Lorenz and Benferroni curves are derived. Maximum likelihood method of estimation is employed to obtain the parameter estimates of the family. The simulation study of the new models is conducted. The efficiency and importance of the new generated family is examined through real data sets.

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Suleman Nasiru

The need to develop generalizations of existing statistical distributions to make them more flexible in modeling real data sets is vital in parametric statistical modeling and inference. Thus, this study develops a new class of distributions called the extended odd Fréchet family of distributions for modifying existing standard distributions. Two special models named the extended odd Fréchet Nadarajah-Haghighi and extended odd Fréchet Weibull distributions are proposed using the developed family. The densities and the hazard rate functions of the two special distributions exhibit different kinds of monotonic and nonmonotonic shapes. The maximum likelihood method is used to develop estimators for the parameters of the new class of distributions. The application of the special distributions is illustrated by means of a real data set. The results revealed that the special distributions developed from the new family can provide reasonable parametric fit to the given data set compared to other existing distributions.


Author(s):  
Zubair Ahmad ◽  
M. Elgarhy ◽  
G.G. Hamedani ◽  
Nadeem Shafique Butt

A new family of distributions called the odd generalized N-H is introduced and studied. Four new special models are presented. Some mathematical properties of the odd generalized N-H family are studied. Explicit expressions for the moments, probability weighted, quantile function, mean deviation, order statistics and Rényi entropy are investigated. Characterizations based on the truncated moments, hazard function and conditional expectations are presented for the generated family. Parameter estimates of the family are obtained based on maximum likelihood procedure. Two real data sets are employed to show the usefulness of the new family.


Author(s):  
U. U. Uwadi ◽  
E. E. Nwezza

In this study, we proposed a family of distribution called the Pseudo Lindley family of distributions. The limiting behaviors of the density and hazard rate function of the new family are examined. Statistical properties of the proposed family of distributions derived include quantile function, moments, order statistics, and Renyi’s entropy. The maximum likelihood method was employed in obtaining the parameter estimates of the Pseudo Lindley family of distribution. Bivariate extension of the proposed family is discussed. Some special members of the family are obtained. The shape of the density function of special members could be unimodal, bathtub shaped, increasing and decreasing. 


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1114
Author(s):  
Guillermo Martínez-Flórez ◽  
Roger Tovar-Falón ◽  
María Martínez-Guerra

This paper introduces a new family of distributions for modelling censored multimodal data. The model extends the widely known tobit model by introducing two parameters that control the shape and the asymmetry of the distribution. Basic properties of this new family of distributions are studied in detail and a model for censored positive data is also studied. The problem of estimating parameters is addressed by considering the maximum likelihood method. The score functions and the elements of the observed information matrix are given. Finally, three applications to real data sets are reported to illustrate the developed methodology.


Filomat ◽  
2019 ◽  
Vol 33 (12) ◽  
pp. 3855-3867 ◽  
Author(s):  
Hassan Bakouch ◽  
Christophe Chesneau ◽  
Muhammad Khan

In this paper, we introduce a new family of distributions extending the odd family of distributions. A new tuning parameter is introduced, with some connections to the well-known transmuted transformation. Some mathematical results are obtained, including moments, generating function and order statistics. Then, we study a special case dealing with the standard loglogistic distribution and the modifiedWeibull distribution. Its main features are to have densities with flexible shapes where skewness, kurtosis, heavy tails and modality can be observed, and increasing-decreasing-increasing, unimodal and bathtub shaped hazard rate functions. Estimation of the related parameters is investigated by the maximum likelihood method. We illustrate the usefulness of our extended odd family of distributions with applications to two practical data sets.


2020 ◽  
Vol 17 (11) ◽  
pp. 4813-4818
Author(s):  
Sanaa Al-Marzouki ◽  
Sharifah Alrajhi

We proposed a new family of distributions from a half logistic model called the generalized odd half logistic family. We expressed its density function as a linear combination of exponentiated densities. We calculate some statistical properties as the moments, probability weighted moment, quantile and order statistics. Two new special models are mentioned. We study the estimation of the parameters for the odd generalized half logistic exponential and the odd generalized half logistic Rayleigh models by using maximum likelihood method. One real data set is assesed to illustrate the usefulness of the subject family.


Mathematics ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 358 ◽  
Author(s):  
M. S. Eliwa ◽  
Ziyad Ali Alhussain ◽  
M. El-Morshedy

Alizadeh et al. introduced a flexible family of distributions, in the so-called Gompertz-G family. In this article, a discrete analogue of the Gompertz-G family is proposed. We also study some of its distributional properties and reliability characteristics. After introducing the general class, three special models of the new family are discussed in detail. The maximum likelihood method is used for estimating the family parameters. A simulation study is carried out to assess the performance of the family parameters. Finally, the flexibility of the new family is illustrated by means of four genuine datasets, and it is found that the proposed model provides a better fit than the competitive distributions.


Author(s):  
Ibrahim Sule ◽  
Sani Ibrahim Doguwa ◽  
Audu Isah ◽  
Haruna Muhammad Jibril

Background: In the last few years, statisticians have introduced new generated families of univariate distributions. These new generators are obtained by adding one or more extra shape parameters to the underlying distribution to get more flexibility in fitting data in different areas such as medical sciences, economics, finance and environmental sciences. The addition of parameter(s) has been proven useful in exploring tail properties and also for improving the goodness-of-fit of the family of distributions under study. Methods: A new three-parameter family of distributions was introduced by using the idea of T-X methodology. Some statistical properties of the new family were derived and studied. Results: A new Topp Leone Kumaraswamy-G family of distributions was introduced. Two special sub-models, that is, the Topp Leone Kumaraswamy exponential distribution and Topp Leone Kumaraswamy log-logistic distribution were investigated. Two real data sets were used to assess the flexibility of the sub-models. Conclusion: The results suggest that the two sub-models performed better than their competitors.


2021 ◽  
Vol 10 (2) ◽  
pp. 119
Author(s):  
Boikanyo Makubate ◽  
Fastel Chipepa ◽  
Broderick Oluyede ◽  
Peter O. Peter

Attempts have been made to define new classes of distributions that provide more flexibility for modeling data that is skewed in nature. In this work, we propose a new family of distributions namely the Marshall-Olkin Half Logistic-G (MO-HL-G) based on the generator pioneered by [Marshall and Olkin , 1997]. This new family of distributions allows for a flexible fit to real data from several fields, such as engineering, hydrology, and survival analysis. The structural properties of these distributions are studied and its model parameters are obtained through the maximum likelihood method. We finally demonstrate the effectiveness of these models via simulation experiments.


Entropy ◽  
2019 ◽  
Vol 21 (11) ◽  
pp. 1089 ◽  
Author(s):  
Rashad A. R. Bantan ◽  
Farrukh Jamal ◽  
Christophe Chesneau ◽  
Mohammed Elgarhy

In this article, we introduce a new general family of distributions derived to the truncated inverted Kumaraswamy distribution (on the unit interval), called the truncated inverted Kumaraswamy generated family. Among its qualities, it is characterized with tractable functions, has the ability to enhance the flexibility of a given distribution, and demonstrates nice statistical properties, including competitive fits for various kinds of data. A particular focus is given on a special member of the family defined with the exponential distribution as baseline, offering a new three-parameter lifetime distribution. This new distribution has the advantage of having a hazard rate function allowing monotonically increasing, decreasing, and upside-down bathtub shapes. In full generality, important properties of the new family are determined, with an emphasis on the entropy (Rényi and Shannon entropy). The estimation of the model parameters is established by the maximum likelihood method. A numerical simulation study illustrates the nice performance of the obtained estimates. Two practical data sets are then analyzed. We thus prove the potential of the new model in terms of fitting, with favorable results in comparison to other modern parametric models of the literature.


Sign in / Sign up

Export Citation Format

Share Document