scholarly journals Study on Nutritional Requirements of Nematophagous Fungi in Terms of Carbon and Nitrogen Sources

2015 ◽  
Vol 7 (6) ◽  
Author(s):  
Anamika Anamika
2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Zahra Ajdari ◽  
Afshin Ebrahimpour ◽  
Musaalbakri Abdul Manan ◽  
Muhajir Hamid ◽  
Rosfarizan Mohamad ◽  
...  

This paper describes the nutritional requirements for the improvement of growth and sporulation of several strains ofMonascus purpureuson solid state cultivation. The findings revealed that glucose enhanced growth of allM. purpureusstrains tested but inhibited the sporulation rate. On the other hand, sucrose induced sporulation but inhibited production of cell mass. A combination of glucose and sucrose greatly enhanced sporulation and cell mass production ofM. purpureus. Although growth and sporulation rate were related to the ratio of carbon to nitrogen (C/N ratio), the types and concentrations of carbon and nitrogen sources also greatly influenced the growth kinetics. Among the media tested, Hiroi-PDA medium was the most preferred medium for allM. purpureusstrains tested for the enhancement of radial growth rate, sporulation, and cell production. Hence, Hiroi-PDA could be suggested as the generic basal medium for the cultivation ofM. purpureus. However, individual medium optimization is required for significant enhancement in growth and sporulation of each strain ofM. purpureus.


1989 ◽  
Vol 67 (8) ◽  
pp. 2532-2534
Author(s):  
Thomas M. Pettey

Carbon and nitrogen sources were examined in a defined agar medium to determine the nutritional requirements of Cryptoporus volvatus, a Hymenomycete. Good growth was obtained with D-glucose, D-fructose, D-mannose, D-xylose, or dextrin as the carbon source. Good growth was obtained with ammonium sulfate, casein, peptone, glutamic acid, glycine, lysine, serine, or tyrosine as the nitrogen source. In a defined agar medium, C. volvatus exhibited a deficiency for thiamine, and a partial deficiency for biotin, inositol, and pyridoxine.


2018 ◽  
Vol 69 ◽  
pp. 1-11 ◽  
Author(s):  
Willian Daniel Hahn Schneider ◽  
Roselei Claudete Fontana ◽  
Simone Mendonça ◽  
Félix Gonçalves de Siqueira ◽  
Aldo José Pinheiro Dillon ◽  
...  

2012 ◽  
Vol 496 ◽  
pp. 457-460
Author(s):  
Xiang Ping Kong

The growth conditions of a Geobacillus sp. were investigated by single-factor experiments. The strain was strictly aerobic bacterium, and could grow on hydrocarbons as the sole carbon source. The optimum carbon and nitrogen sources were 3.0% sucrose and 0.20% KNO3, respectively. The range of temperature, salinity and pH for the bacterial growth was 35-70 °C, 0-10% NaCl and 5.5-9.5, and good growth was obtained at 35-65 °C, 0.5-8% NaCl and 6.0-9.0, respectively. Particularly, the optimum temperature for the bacterial growth was between 50 °C and 60 °C. The strain had wide adaptability to the extreme conditions, and may be potentially applied to microbial enhanced oil recovery and oil-waste bioremediation technology.


2011 ◽  
Vol 10 (15) ◽  
pp. 2951-2958 ◽  
Author(s):  
Gutieacute rrez Rojas Ivonne ◽  
Beatriz Torres Geraldo Ana ◽  
Moreno Sarmiento Nubia

2011 ◽  
Vol 393-395 ◽  
pp. 851-854
Author(s):  
Lin Hua Zhang ◽  
Xin Zheng ◽  
Ya Jun Lang

In this study, the metabolic network of ectoine by Halomonas venusta DSM 4743 was established. The key nodes to influence the ectoine fermentation in metabolic flux and the basis during optimal control of fermentation process were investigated. The results showed that G6P, α-KG and OAA nodes were the key factors to influence the synthesis of ectoine. The metabolic flux distributions at the key nodes were significantly improved and ectoine concentration was enhanced in ectoine fermentation by adopting monosodium glutamate as the sole carbon and nitrogen sources, feeding monosodium glutamate and supplying oxygen limitedly. The batch fermentation was carried out in 10 L fermentor , the concentration and yield of ectoine was 8.4 g/L and 0.1 g/g, respectively, which were increased by 2.8 and 2 times, by comparison with batch fermentation using glucose as carbon source.


Sign in / Sign up

Export Citation Format

Share Document