scholarly journals Petrophysical Parameters Estimation Using Geophysical Well Log Data of Indus Sub-Basin Area, Pakistan

2013 ◽  
Vol 5 (4) ◽  
Author(s):  
Nasir Khan ◽  
Zhu Pei Min ◽  
Ahmed Amara Konaté
2021 ◽  
Vol 2092 (1) ◽  
pp. 012024
Author(s):  
Tangwei Liu ◽  
Hehua Xu ◽  
Xiaobin Shi ◽  
Xuelin Qiu ◽  
Zhen Sun

Abstract Reservoir porosity and permeability are considered as very important parameters in characterizing oil and gas reservoirs. Traditional methods for porosity and permeability prediction are well log and core data analysis to get some regression empirical formulas. However, because of strong non-linear relationship between well log data and core data such as porosity and permeability, usual statistical regression methods are not completely able to provide meaningful estimate results. It is very difficult to measure fine scale porosity and permeability parameters of the reservoir. In this paper, the least square support vector machine (LS-SVM) method is applied to the parameters estimation with well log and core data of Qiongdongnan basin reservoirs. With the log and core exploration data of Qiongdongnan basin, the approach and prediction models of porosity and permeability are constructed and applied. There are several type of log data for the determination of porosity and permeability. These parameters are related with the selected log data. However, a precise analysis and determine of parameters require a combinatorial selection method for different type data. Some curves such as RHOB,CALI,POTA,THOR,GR are selected from all obtained logging curves of a Qiongdongnan basin well to predict porosity. At last we give some permeability prediction results based on LS-SVM method. High precision practice results illustrate the efficiency of LS-SVM method for practical reservoir parameter estimation problems.


2014 ◽  
Vol 651-653 ◽  
pp. 1302-1305 ◽  
Author(s):  
Zong An Xue ◽  
Yi Ping Wu

The typical characteristics of carbonate reservoir is heterogeneous. The reservoirs were deposited in slope of marginal neritic carbonate plat form and marginal reefs in Middle East Oil Field. The vuggy carbonate reservoir pore systems include intergranular pores, mould pores, intercrystal pores, micropores and dissolution fracture. I t can be divided into separate vugs and touching vugs on the basis of vug interconnection. The goal of well-log evaluation is to describe the spatial distribution of petrophysical parameters, such as porosity and permeability. Well-log evaluation and core analyses provide quantitative measurements of petrophysical parameters in the vicinity of the well bore. The key for quantifying physics models is buildup the relationship between the log data and the core analyses result. The purpose of reservoir evaluation is to use the Interactive Mineral Solver module of Interactive Physics software to solve for mineralogy, porosity and permeability. The result of the analyses shows that calculated parameters has high coherence with core sample test. For vuggy carbonate reservoir evaluation, It shows that accurate values of physics parameters can be predicted using selected module in well-log data processing and interpretation.


Author(s):  
Richa ◽  
S. P. Maurya ◽  
Kumar H. Singh ◽  
Raghav Singh ◽  
Rohtash Kumar ◽  
...  

AbstractSeismic inversion is a geophysical technique used to estimate subsurface rock properties from seismic reflection data. Seismic data has band-limited nature and contains generally 10–80 Hz frequency hence seismic inversion combines well log information along with seismic data to extract high-resolution subsurface acoustic impedance which contains low as well as high frequencies. This rock property is used to extract qualitative as well as quantitative information of subsurface that can be analyzed to enhance geological as well as geophysical interpretation. The interpretations of extracted properties are more meaningful and provide more detailed information of the subsurface as compared to the traditional seismic data interpretation. The present study focused on the analysis of well log data as well as seismic data of the KG basin to find the prospective zone. Petrophysical parameters such as effective porosity, water saturation, hydrocarbon saturation, and several other parameters were calculated using the available well log data. Low Gamma-ray value, high resistivity, and cross-over between neutron and density logs indicated the presence of gas-bearing zones in the KG basin. Three main hydrocarbon-bearing zones are identified with an average Gamma-ray value of 50 API units at the depth range of (1918–1960 m), 58 API units (2116–2136 m), and 66 API units (2221–2245 m). The average resistivity is found to be 17 Ohm-m, 10 Ohm-m, and 12 Ohm-m and average porosity is 15%, 15%, and 14% of zone 1, zone 2, and zone 3 respectively. The analysis of petrophysical parameters and different cross-plots showed that the reservoir rock is of sandstone with shale as a seal rock. On the other hand, two types of seismic inversion namely Maximum Likelihood and Model-based seismic inversion are used to estimate subsurface acoustic impedance. The inverted section is interpreted as two anomalous zones with very low impedance ranging from 1800 m/s*g/cc to 6000 m/s*g/cc which is quite low and indicates the presence of loose formation.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 804
Author(s):  
Lin Liu ◽  
Xiumei Zhang ◽  
Xiuming Wang

Natural gas hydrate is a new clean energy source in the 21st century, which has become a research point of the exploration and development technology. Acoustic well logs are one of the most important assets in gas hydrate studies. In this paper, an improved Carcione–Leclaire model is proposed by introducing the expressions of frame bulk modulus, shear modulus and friction coefficient between solid phases. On this basis, the sensitivities of the velocities and attenuations of the first kind of compressional (P1) and shear (S1) waves to relevant physical parameters are explored. In particular, we perform numerical modeling to investigate the effects of frequency, gas hydrate saturation and clay on the phase velocities and attenuations of the above five waves. The analyses demonstrate that, the velocities and attenuations of P1 and S1 are more sensitive to gas hydrate saturation than other parameters. The larger the gas hydrate saturation, the more reliable P1 velocity. Besides, the attenuations of P1 and S1 are more sensitive than velocity to gas hydrate saturation. Further, P1 and S1 are almost nondispersive while their phase velocities increase with the increase of gas hydrate saturation. The second compressional (P2) and shear (S2) waves and the third kind of compressional wave (P3) are dispersive in the seismic band, and the attenuations of them are significant. Moreover, in the case of clay in the solid grain frame, gas hydrate-bearing sediments exhibit lower P1 and S1 velocities. Clay decreases the attenuation of P1, and the attenuations of S1, P2, S2 and P3 exhibit little effect on clay content. We compared the velocity of P1 predicted by the model with the well log data from the Ocean Drilling Program (ODP) Leg 164 Site 995B to verify the applicability of the model. The results of the model agree well with the well log data. Finally, we estimate the hydrate layer at ODP Leg 204 Site 1247B is about 100–130 m below the seafloor, the saturation is between 0–27%, and the average saturation is 7.2%.


Sign in / Sign up

Export Citation Format

Share Document