scholarly journals Drought Hazard Mapping from Regional Climate Multimodel Ensemble over Spain

2015 ◽  
Vol 10 (2) ◽  
pp. 17
Author(s):  
Sandra G. Garcia Galiano ◽  
Juan Diego Giraldo Osorio ◽  
Patricia Olmos Gimenez

<p>Improving the knowledge about the impacts of climate change on extreme drought events at basin scale, is important for decision makers in order to develop drought contingency plans which are the leading edge of adaptive management strategy. Considering high-resolution grids of observed daily rainfall and information provided by latest-generation Regional Climate Models (RCMs), the changes in the spatio-temporal patterns of extreme droughts in peninsular Spain are assessed. The non-stationarity character of time series, due to climate and anthropogenic changes, is represented by probabilistic models considering the time evolution of probability density function (PDF) parameters fitted to annual maximum lengths of dry spells time series. By a PDF ensemble from 17 RCMs, the spatio-temporal variability exhibited by the RCMs is represented. Scoring of models is based in the goodness-of-fit to CDFs (cumulative distribution functions) of observed annual maximum dry spells lengths. The reliability and skills of RCMs are assessed, for building the PDF ensemble, at grid site for the study area. Therefore, by adjusting PDF to series of annual maximum dry spells lengths, applying GAMLSS and bootstrapping techniques, the assessment of regional changes and trends associated to high returns periods (<em>Tr</em> = 25 and 50 yr.) is assessed. In general, an intensification of drought events for 2050 horizon, in contrast with 1990, is expected. By increasing return periods, the length of the annual maximum dry spells rises, albeit with a smaller number of areas with significant differences. The areas prone to extreme droughts in mainland Spain are identified.</p>

Water ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1477 ◽  
Author(s):  
Davide De Luca ◽  
Luciano Galasso

This study tests stationary and non-stationary approaches for modelling data series of hydro-meteorological variables. Specifically, the authors considered annual maximum rainfall accumulations observed in the Calabria region (southern Italy), and attention was focused on time series characterized by heavy rainfall events which occurred from 1 January 2000 in the study area. This choice is justified by the need to check if the recent rainfall events in the new century can be considered as very different or not from the events occurred in the past. In detail, the whole data set of each considered time series (characterized by a sample size N > 40 data) was analyzed, in order to compare recent and past rainfall accumulations, which occurred in a specific site. All the proposed models were based on the Two-Component Extreme Value (TCEV) probability distribution, which is frequently applied for annual maximum time series in Calabria. The authors discussed the possible sources of uncertainty related to each framework and remarked on the crucial role played by ergodicity. In fact, if the process is assumed to be non-stationary, then ergodicity cannot hold, and thus possible trends should be derived from external sources, different from the time series of interest: in this work, Regional Climate Models’ (RCMs) outputs were considered in order to assess possible trends of TCEV parameters. From the obtained results, it does not seem essential to adopt non-stationary models, as significant trends do not appear from the observed data, due to a relevant number of heavy events which also occurred in the central part of the last century.


2012 ◽  
Vol 16 (6) ◽  
pp. 1709-1723 ◽  
Author(s):  
D. González-Zeas ◽  
L. Garrote ◽  
A. Iglesias ◽  
A. Sordo-Ward

Abstract. An important step to assess water availability is to have monthly time series representative of the current situation. In this context, a simple methodology is presented for application in large-scale studies in regions where a properly calibrated hydrologic model is not available, using the output variables simulated by regional climate models (RCMs) of the European project PRUDENCE under current climate conditions (period 1961–1990). The methodology compares different interpolation methods and alternatives to generate annual times series that minimise the bias with respect to observed values. The objective is to identify the best alternative to obtain bias-corrected, monthly runoff time series from the output of RCM simulations. This study uses information from 338 basins in Spain that cover the entire mainland territory and whose observed values of natural runoff have been estimated by the distributed hydrological model SIMPA. Four interpolation methods for downscaling runoff to the basin scale from 10 RCMs are compared with emphasis on the ability of each method to reproduce the observed behaviour of this variable. The alternatives consider the use of the direct runoff of the RCMs and the mean annual runoff calculated using five functional forms of the aridity index, defined as the ratio between potential evapotranspiration and precipitation. In addition, the comparison with respect to the global runoff reference of the UNH/GRDC dataset is evaluated, as a contrast of the "best estimator" of current runoff on a large scale. Results show that the bias is minimised using the direct original interpolation method and the best alternative for bias correction of the monthly direct runoff time series of RCMs is the UNH/GRDC dataset, although the formula proposed by Schreiber (1904) also gives good results.


2016 ◽  
Vol 20 (4) ◽  
pp. 1387-1403 ◽  
Author(s):  
Hjalte Jomo Danielsen Sørup ◽  
Ole Bøssing Christensen ◽  
Karsten Arnbjerg-Nielsen ◽  
Peter Steen Mikkelsen

Abstract. Spatio-temporal precipitation is modelled for urban application at 1 h temporal resolution on a 2 km grid using a spatio-temporal Neyman–Scott rectangular pulses weather generator (WG). Precipitation time series used as input to the WG are obtained from a network of 60 tipping-bucket rain gauges irregularly placed in a 40 km  ×  60 km model domain. The WG simulates precipitation time series that are comparable to the observations with respect to extreme precipitation statistics. The WG is used for downscaling climate change signals from regional climate models (RCMs) with spatial resolutions of 25 and 8 km, respectively. Six different RCM simulation pairs are used to perturb the WG with climate change signals resulting in six very different perturbation schemes. All perturbed WGs result in more extreme precipitation at the sub-daily to multi-daily level and these extremes exhibit a much more realistic spatial pattern than what is observed in RCM precipitation output. The WG seems to correlate increased extreme intensities with an increased spatial extent of the extremes meaning that the climate-change-perturbed extremes have a larger spatial extent than those of the present climate. Overall, the WG produces robust results and is seen as a reliable procedure for downscaling RCM precipitation output for use in urban hydrology.


2012 ◽  
Vol 25 (3) ◽  
pp. 939-957 ◽  
Author(s):  
A. Amengual ◽  
V. Homar ◽  
R. Romero ◽  
S. Alonso ◽  
C. Ramis

Abstract Projections of climate change effects for the System of Platja de Palma (SPdP) are derived using a novel statistical technique. Socioeconomic activities developed in this settlement are very closely linked to its climate. Any planning for socioeconomic opportunities in the mid- and long term must take into account the possible effects of climate change. To this aim, daily observed series of minimum and maximum temperatures, precipitation, relative humidity, cloud cover, and wind speed have been analyzed. For the climate projections, daily data generated by an ensemble of regional climate models (RCMs) have been used. To properly use RCM data at local scale, a quantile–quantile adjustment has been applied to the simulated regional projections. The method is based on detecting changes in the cumulative distribution functions between the recent past and successive time slices of the simulated climate and applying these, after calibration, to the recent past (observed) series. Results show an overall improvement in reproducing the present climate baseline when using calibrated series instead of raw RCM outputs, although the correction does not result in such clear improvement when dealing with very extreme rainfalls. Next, the corrected series are analyzed to quantify the climate change signal. An increase of the annual means for temperatures together with a decrease for the remaining variables is projected throughout the twenty-first century. Increases in weak and intense daily rainfalls and in high extremes for daily maximum temperature can also be expected. With this information at hand, the experts planning the future of SPdP can respond more effectively to the problem of local adaptation to climate change.


2012 ◽  
Vol 9 (1) ◽  
pp. 175-214
Author(s):  
D. González-Zeas ◽  
L. Garrote ◽  
A. Iglesias ◽  
A. Sordo-Ward

Abstract. An important aspect to assess the impact of climate change on water availability is to have monthly time series representative of the current situation. In this context, a simple methodology is presented for application in large-scale studies in regions where a properly calibrated hydrologic model is not available, using the output variables simulated by regional climate models (RCMs) of the European project PRUDENCE under current climate conditions (period 1961–1990). The methodology compares different interpolation methods and alternatives to generate annual times series that minimize the bias with respect to observed values. The objective is to identify the best alternative to obtain bias-corrected, monthly runoff time series from the output of RCM simulations. This study uses information from 338 basins in Spain that cover the entire mainland territory and whose observed values of naturalised runoff have been estimated by the distributed hydrological model SIMPA. Four interpolation methods for downscaling runoff to the basin scale from 10 RCMs are compared with emphasis on the ability of each method to reproduce the observed behavior of this variable. The alternatives consider the use of the direct runoff of the RCMs and the mean annual runoff calculated using five functional forms of the aridity index, defined as the ratio between potential evaporation and precipitation. In addition, the comparison with respect to the global runoff reference of the UNH/GRDC dataset is evaluated, as a contrast of the "best estimator" of current runoff on a large scale. Results show that the bias is minimised using the direct original interpolation method and the best alternative for bias correction of the monthly direct runoff time series of RCMs is the UNH/GRDC dataset, although the formula proposed by Schreiber also gives good results.


2016 ◽  
Author(s):  
Klaus Gierens ◽  
Kostas Eleftheratos

Abstract. In the present study we explore the capability of the intercalibrated HIRS brightness temperature data at channel 12 (the HIRS water vapour channel; T12) to reproduce ice supersaturation in the upper troposphere during the period 1979–2014. Focus is given on the transition from the HIRS 2 to the HIRS 3 instrument in the year 1999, which involved a shift of the central wavelength in channel 12 from 6.7 µm to 6.5 µm. It is shown that this shift produced a discontinuity in the time series of low T12 values ( 70 %) in the year 1999 which prevented us from maintaining a continuous, long term time series of ice saturation throughout the whole record (1979–2014). We present that additional corrections are required to the low T12 values in order to bring HIRS 3 levels down to HIRS 2 levels. The new corrections are based on the cumulative distribution functions of T12 from NOAA 14 and 15 satellites (that is, when the transition from HIRS 2 to HIRS 3 occurred). By applying these corrections to the low T12 values we show that the discontinuity in the time series caused by the transition of HIRS 2 to HIRS 3 is not apparent anymore when it comes to calculate extreme UTHi cases. We come up with a new time series for values found at the low tail of the T12 distribution, which can be further exploited for analyses of ice saturation and supersaturation cases. The validity of the new method with respect to typical intercalibration methods such as regression-based methods is presented and discussed.


2017 ◽  
Author(s):  
Ruifang Guo ◽  
Yuanbo Liu ◽  
Han Zhou ◽  
Yaqiao Zhu

Abstract. Precipitation is one of the most important components of the global water cycle. Precipitation data at high spatial and temporal resolutions are crucial for basin-scale hydrological and meteorological studies. In this study, we proposed a cumulative distribution of frequency (CDF)-based downscaling method (DCDF) to obtain hourly 0.05° × 0.05° precipitation data. The main hypothesis is that a variable with the same resolution of target data should produce a CDF that is similar to the reference data. The method was demonstrated using the 3 hourly 0.25° × 0.25° Climate Prediction Center Morphing method (CMORPH) dataset and the hourly 0.05° × 0.05° FY2-E Geostationary (GEO) Infrared (IR) temperature brightness (Tb) data. Initially, power function relationships were established between precipitation rate and Tb for each 1° × 1° region. Then the CMORPH data were downscaled to 0.05° × 0.05°. The downscaled results were validated over diverse rainfall regimes in China. Within each rainfall regime, the fitting functions coefficients were able to implicitly reflect the characteristics of precipitation. Qualitatively, the downscaled estimates were able to capture more details about rainfall motions and changes. Quantitatively, the time series of the downscaled estimates were more similar to the rain gauge data than the original CMORPH product at the daily scale. The downscaled estimates not only improved spatio-temporal resolutions, but also performed better (Bias: −7.35 %~10.35 %; correlation coefficient (CC): 0.48~0.60) than the CMORPH product (Bias: 20.82 %~94.19 %; CC: 0.31~0.59) over convective precipitating regions. The downscaled results performed as well as the CMORPH product over regions dominated with frontal rain systems and performed relatively poorly over mountainous or hilly areas where orographic rain systems dominate.


2017 ◽  
Author(s):  
Lei Chen ◽  
Shuang Li ◽  
Yucen Zhong ◽  
Zhenyao Shen

Abstract. Numerous research studies have been conducted to assess uncertainty in hydrological and nonpoint source pollution predictions, but few studies have considered both prediction and measurement uncertainty in the model evaluation process. In this study, the Cumulative Distribution Function Approach (CDFA) and the Monte Carlo Approach (MCA) were used to develop two new approaches for model evaluation within an uncertainty framework. For the CDFA, a new distance between the cumulative distribution functions of the predicted data and the measured data was established, whereas the MCA was proposed to address conditions with dispersed data points. These new approaches were then applied in combination with the Soil and Water Assessment Tool in the Three Gorges Region, China. Based on the results, these two new approaches provided more accurate goodness-of-fit indicators for model evaluation compared to traditional methods. The model performance worsened when the error range became larger, and the choice of probability density functions (PDFs) affected model performance, especially for non-point source (NPS) predictions. The case study showed that if the measured error is small and if the distribution can be specified, the CDFA and MCA could be extended to other model applications within an uncertain condition.


2021 ◽  
Author(s):  
◽  
Caroline Moy

<p>This thesis considers the conventional SARIMA model and the EVT-GARCH model for forecasting electricity prices. However, we find that these models do not adequately capture the important characteristics of the electricity price data. A new model is developed, the EVT-SARIMA model, for forecasting electricity prices which is found to be the best at modelling the nature of the electricity prices. A time series of half-hourly electricity price data from the Hayward node in New Zealand is transformed into a daily average price series and using this resulting series, appropriate models are fitted for estimating and forecasting.  The new EVT-SARIMA model is used to simulate 1000 time series of daily electricity prices, over a 90 day period, to consider strategies for managing the risk associated with price volatility. The effects of different financial instruments on the cumulative distribution functions of predicted revenue obtained using our model are considered. Results suggest that different contracts have different effects on the predicted revenue. However, all contracts have the effect of reducing variability in the predicted revenue values and thus, should be used by a risk manager to reduce the range of probable revenue values. The quantity traded and which contracts to use is dependent on the objectives of the risk manager.</p>


2017 ◽  
Vol 10 (2) ◽  
pp. 681-693 ◽  
Author(s):  
Klaus Gierens ◽  
Kostas Eleftheratos

Abstract. In the present study we explore the capability of the intercalibrated HIRS brightness temperature data at channel 12 (the HIRS water vapour channel; T12) to reproduce ice supersaturation in the upper troposphere during the period 1979–2014. Focus is given on the transition from the HIRS 2 to the HIRS 3 instrument in the year 1999, which involved a shift of the central wavelength in channel 12 from 6.7 to 6.5 µm. It is shown that this shift produced a discontinuity in the time series of low T12 values ( < 235 K) and associated cases of high upper-tropospheric humidity with respect to ice (UTHi  > 70 %) in the year 1999 which prevented us from maintaining a continuous, long-term time series of ice saturation throughout the whole record (1979–2014). We show that additional corrections are required to the low T12 values in order to bring HIRS 3 levels down to HIRS 2 levels. The new corrections are based on the cumulative distribution functions of T12 from NOAA 14 and 15 satellites (that is, when the transition from HIRS 2 to HIRS 3 occurred). By applying these corrections to the low T12 values we show that the discontinuity in the time series caused by the transition of HIRS 2 to HIRS 3 is not apparent anymore when it comes to calculating extreme UTHi cases. We come up with a new time series for values found at the low tail of the T12 distribution, which can be further exploited for analyses of ice saturation and supersaturation cases. The validity of the new method with respect to typical intercalibration methods such as regression-based methods is presented and discussed.


Sign in / Sign up

Export Citation Format

Share Document