scholarly journals A Statistical Adjustment of Regional Climate Model Outputs to Local Scales: Application to Platja de Palma, Spain

2012 ◽  
Vol 25 (3) ◽  
pp. 939-957 ◽  
Author(s):  
A. Amengual ◽  
V. Homar ◽  
R. Romero ◽  
S. Alonso ◽  
C. Ramis

Abstract Projections of climate change effects for the System of Platja de Palma (SPdP) are derived using a novel statistical technique. Socioeconomic activities developed in this settlement are very closely linked to its climate. Any planning for socioeconomic opportunities in the mid- and long term must take into account the possible effects of climate change. To this aim, daily observed series of minimum and maximum temperatures, precipitation, relative humidity, cloud cover, and wind speed have been analyzed. For the climate projections, daily data generated by an ensemble of regional climate models (RCMs) have been used. To properly use RCM data at local scale, a quantile–quantile adjustment has been applied to the simulated regional projections. The method is based on detecting changes in the cumulative distribution functions between the recent past and successive time slices of the simulated climate and applying these, after calibration, to the recent past (observed) series. Results show an overall improvement in reproducing the present climate baseline when using calibrated series instead of raw RCM outputs, although the correction does not result in such clear improvement when dealing with very extreme rainfalls. Next, the corrected series are analyzed to quantify the climate change signal. An increase of the annual means for temperatures together with a decrease for the remaining variables is projected throughout the twenty-first century. Increases in weak and intense daily rainfalls and in high extremes for daily maximum temperature can also be expected. With this information at hand, the experts planning the future of SPdP can respond more effectively to the problem of local adaptation to climate change.

2015 ◽  
Vol 16 (6) ◽  
pp. 2421-2442 ◽  
Author(s):  
David W. Pierce ◽  
Daniel R. Cayan ◽  
Edwin P. Maurer ◽  
John T. Abatzoglou ◽  
Katherine C. Hegewisch

Abstract Global climate model (GCM) output typically needs to be bias corrected before it can be used for climate change impact studies. Three existing bias correction methods, and a new one developed here, are applied to daily maximum temperature and precipitation from 21 GCMs to investigate how different methods alter the climate change signal of the GCM. The quantile mapping (QM) and cumulative distribution function transform (CDF-t) bias correction methods can significantly alter the GCM’s mean climate change signal, with differences of up to 2°C and 30% points for monthly mean temperature and precipitation, respectively. Equidistant quantile matching (EDCDFm) bias correction preserves GCM changes in mean daily maximum temperature but not precipitation. An extension to EDCDFm termed PresRat is introduced, which generally preserves the GCM changes in mean precipitation. Another problem is that GCMs can have difficulty simulating variance as a function of frequency. To address this, a frequency-dependent bias correction method is introduced that is twice as effective as standard bias correction in reducing errors in the models’ simulation of variance as a function of frequency, and it does so without making any locations worse, unlike standard bias correction. Last, a preconditioning technique is introduced that improves the simulation of the annual cycle while still allowing the bias correction to take account of an entire season’s values at once.


2014 ◽  
Vol 53 (9) ◽  
pp. 2148-2162 ◽  
Author(s):  
Bárbara Tencer ◽  
Andrew Weaver ◽  
Francis Zwiers

AbstractThe occurrence of individual extremes such as temperature and precipitation extremes can have a great impact on the environment. Agriculture, energy demands, and human health, among other activities, can be affected by extremely high or low temperatures and by extremely dry or wet conditions. The simultaneous or proximate occurrence of both types of extremes could lead to even more profound consequences, however. For example, a dry period can have more negative consequences on agriculture if it is concomitant with or followed by a period of extremely high temperatures. This study analyzes the joint occurrence of very wet conditions and high/low temperature events at stations in Canada. More than one-half of the stations showed a significant positive relationship at the daily time scale between warm nights (daily minimum temperature greater than the 90th percentile) or warm days (daily maximum temperature above the 90th percentile) and heavy-precipitation events (daily precipitation exceeding the 75th percentile), with the greater frequencies found for the east and southwest coasts during autumn and winter. Cold days (daily maximum temperature below the 10th percentile) occur together with intense precipitation more frequently during spring and summer. Simulations by regional climate models show good agreement with observations in the seasonal and spatial variability of the joint distribution, especially when an ensemble of simulations was used.


2005 ◽  
Vol 18 (23) ◽  
pp. 5011-5023 ◽  
Author(s):  
L. A. Vincent ◽  
T. C. Peterson ◽  
V. R. Barros ◽  
M. B. Marino ◽  
M. Rusticucci ◽  
...  

Abstract A workshop on enhancing climate change indices in South America was held in Maceió, Brazil, in August 2004. Scientists from eight southern countries brought daily climatological data from their region for a meticulous assessment of data quality and homogeneity, and for the preparation of climate change indices that can be used for analyses of changes in climate extremes. This study presents an examination of the trends over 1960–2000 in the indices of daily temperature extremes. The results indicate no consistent changes in the indices based on daily maximum temperature while significant trends were found in the indices based on daily minimum temperature. Significant increasing trends in the percentage of warm nights and decreasing trends in the percentage of cold nights were observed at many stations. It seems that this warming is mostly due to more warm nights and fewer cold nights during the summer (December–February) and fall (March–May). The stations with significant trends appear to be located closer to the west and east coasts of South America.


2021 ◽  
Author(s):  
Mastawesha Misganaw Engdaw ◽  
Andrew Ballinger ◽  
Gabriele Hegerl ◽  
Andrea Steiner

<p>In this study, we aim at quantifying the contribution of different forcings to changes in temperature extremes over 1981–2020 using CMIP6 climate model simulations. We first assess the changes in extreme hot and cold temperatures defined as days below 10% and above 90% of daily minimum temperature (TN10 and TN90) and daily maximum temperature (TX10 and TX90). We compute the change in percentage of extreme days per season for October-March (ONDJFM) and April-September (AMJJAS). Spatial and temporal trends are quantified using multi-model mean of all-forcings simulations. The same indices will be computed from aerosols-, greenhouse gases- and natural-only forcing simulations. The trends estimated from all-forcings simulations are then attributed to different forcings (aerosols-, greenhouse gases-, and natural-only) by considering uncertainties not only in amplitude but also in response patterns of climate models. The new statistical approach to climate change detection and attribution method by Ribes et al. (2017) is used to quantify the contribution of human-induced climate change. Preliminary results of the attribution analysis show that anthropogenic climate change has the largest contribution to the changes in temperature extremes in different regions of the world.</p><p><strong>Keywords:</strong> climate change, temperature, extreme events, attribution, CMIP6</p><p> </p><p><strong>Acknowledgement:</strong> This work was funded by the Austrian Science Fund (FWF) under Research Grant W1256 (Doctoral Programme Climate Change: Uncertainties, Thresholds and Coping Strategies)</p>


2021 ◽  
Author(s):  
Farhan Aziz ◽  
Nadeem Tariq ◽  
Akif Rahim ◽  
Ambreen Mahmood

<p>In recent years, extreme events and their severe damage have become more common around the world. It is widely known that atmospheric greenhouse gases have contributed to global warming. <br>A set of appropriate indicators describing the extremes of climate change can be used to study the extent of climate change. This study reveals the trends of temperature extreme indices on the spatial scale in the western part of Northwest Himalayas. The study is conducted at 13 climate stations lies at a different altitude of the study area.The Daily maximum and minimum temperature data during 2000--2018 of stations obtained from the Pakistan Meteorological Department (PMD) and Water and Power Development Authority (WAPDA). The 12 extreme temperature indices (FD, SU, TXx , TXn., TNx, TNn, TN10p , TN90p, TX10p , TX90p, CSDI, WSDI) recommended by ETCCDI (Expert Team on Climate Change Detection and Indices) are used to study the variabilities in temperature extremes. These indices are characterized based on amplitude, persistence, and frequency. The analysis is performed by using R package of extremes “RClimDEX”. The analysis shows the frequency of summer days (Su) and warm spells (WSDI) have increasing trends in the Southwest region, whereas the frequency of cold spells and frost days have decreasing trends observed in the Northern region of the study areas. The maximum and minimum values of daily maximum temperature (TXX, TXN) increase in the foothill area of the region and decreasing trends in the high elevation region. The day and night get cool in the Northwest region, whereas the days and nights are showing warmer trends in low elevation regions of the study area. Overall, the study concludes that the Northwestern parts have cool trends while South West and South eastern parts have warm trends during the early 21st century.</p><p><strong>Key words:</strong>  Temperature Extremes, Northwest Himalayas, Trends, R-Climdex, Climate Change</p>


2020 ◽  
Author(s):  
David Sexton ◽  
Jason Lowe ◽  
James Murphy ◽  
Glen Harris ◽  
Elizabeth Kendon ◽  
...  

<p>UK Climate Projections 2018 (UKCP18) included land and marine projections and were published in 2018 to replace UKCP09. The land projections had three components, and all were designed to provide more information on future weather compared to UKCP09. The first component updated the UKCP09 probabilistic projections by including newer CMIP5 data and focussing on seasonal means from individual years rather than 30-year averages. The probabilistic projections represent the wider uncertainty. The second two components (global and regional projections) both had the aim of providing plausible examples of future climate, but at different resolutions.</p><p>The global projections were a combination of 13 CMIP5 models and a 15-member perturbed parameter ensemble (PPE) of coupled simulations for 1900-2100 using CMIP5 RCP8.5 from 2005 onwards. The PPE was provided at 60km atmosphere, quarter degree ocean and the large-scale conditions from twelve of the members were used to drive the regional model at both 12km and 2.2km resolution. These plausible examples are more useful for providing information about weather in a future climate to support a storyline approach for decision making.</p><p>The talk will present examples of new ways to use UKCP18 compared to UKCP09.  We will show how the global projections can be used to understand that the recent record winter daily maximum temperature in the UK in 2019 had a large contribution from internal variability and what this means for breaking the record in a warming climate. We also use an example from China to demonstrate one way to exploit information at different time scales, looking at how a circulation index, which is predictable and related to tropical cyclone landfall, changes in a future climate.</p><p>Finally, we show that while the enhanced resolution of the global and regional projections has improved our capability to provide climate information linked to the better representation of circulation, they lack diversity in some of the key drivers of future climate. Therefore, a key way forward will be to find an appropriate balance between the need for better diversity (e.g. multiple ensembles such as CMIP or PPEs) and the need for an appropriate resolution to retain this new capability.</p>


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Khyati Kakkad ◽  
Michelle L. Barzaga ◽  
Sylvan Wallenstein ◽  
Gulrez Shah Azhar ◽  
Perry E. Sheffield

Health effects from climate change are an international concern with urban areas at particular risk due to urban heat island effects. The burden of disease on vulnerable populations in non-climate-controlled settings has not been well studied. This study compared neonatal morbidity in a non-air-conditioned hospital during the 2010 heat wave in Ahmedabad to morbidity in the prior and subsequent years. The outcome of interest was neonatal intensive care unit (NICU) admissions for heat. During the months of April, May, and June of 2010, 24 NICU admissions were for heat versus 8 and 4 in 2009 and 2011, respectively. Both the effect of moving the maternity ward and the effect of high temperatures were statistically significant, controlling for each other. Above 42 degrees Celsius, each daily maximum temperature increase of a degree was associated with 43% increase in heat-related admissions (95% CI 9.2–88%). Lower floor location of the maternity ward within hospital which occurred after the 2010 heat wave showed a protective effect. These findings demonstrate the importance of simple surveillance measures in motivating a hospital policy change for climate change adaptation—here relocating one ward—and the potential increasing health burden of heat in non-climate-controlled institutions on vulnerable populations.


2021 ◽  
Author(s):  
Raju Kalita ◽  
Dipangkar Kalita ◽  
Atul Saxena

Abstract We have used Mann-Kendall trend test and Sen’s slope estimator method to find out significant changes in extreme climate indices for daily temperature as well as precipitation over the period 1979 to 2020 in Cherrapunji. In the present study, a total of 24 precipitation and temperature based extreme climate indices were calculated using RClimDex v 1.9-3. Among 24 indices, 7 were derived from number of days above nn mm rainfall (Rnn) according to Indian Meteorological Department (IMD) convention and the rest were in accordance with the Expert Team on Climate Change Detection and Indices (ETCCDI). It was observed that, among all the indices, consecutive dry days (CDD), summer days (SU25) and very light rainfall (VLR) days increased significantly with 0.54, 1.58 and 0.14 days/year respectively, while only consecutive wet days (CWD) decreased significantly with 0.36 days/year. A slight negative trend was also observed in case of tropical nights (TR20) and among the other precipitation indices as well. Again, the indices associated with daily maximum temperature increased significantly with annual change of 0.06 to 0.07 ⁰C/year. And for indices associated with daily minimum temperature, almost no change or a slight negative change was observed, except a significant positive trend in February and significant negative trend in November for TNN only. The analysis reveals that some of the extreme climate indices which explains the climatic conditions of Cherrapunji has changed a lot over the period of 42 years and if this trend continues then Cherrapunji will be under threat when it comes to climate change.


Atmosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1472
Author(s):  
Wei Yuan ◽  
Panxi Dai ◽  
Mengxiang Xu ◽  
Wei Song ◽  
Peng Zhang

Aviation operations are significantly affected by weather conditions, such as high-temperature days. Under global warming, rising temperatures decrease the air density and thus, reduce the maximum takeoff weight of an aircraft. In this study, we investigate the impact of global warming on the aircraft takeoff performance in 53 airports in China by combining observational data and CMIP6 climate projections. There is a distinct geographic inhomogeneity of critical temperature, above which the takeoff weight decreases significantly with the increasing air temperature, mostly due to differences in airport elevations. By the end of the century, under the SSP5-8.5 scenario (with average warming of 5.2 °C in China), the daily maximum temperature for nearly all summer days in West China and for about half of the summer days in East China exceeds critical temperature, indicating that frequent weight restriction will be necessary. We further examine the reduction in carrying capacity due to climate change. By the end of the century, under the SSP5-8.5 scenario, the summer total carrying capacity will be reduced by about 2.8% averaged over all 53 airports. The impacts on airports in West China are nearly four times greater than those in East China, due to the higher vulnerability and stronger warming in West China.


2021 ◽  
Vol 9 ◽  
Author(s):  
Chuyin Tian ◽  
Guohe Huang ◽  
Yanli Liu ◽  
Denghua Yan ◽  
Feng Wang ◽  
...  

Evident climate change has been observed and projected in observation records and General Circulation Models (GCMs), respectively. This change is expected to reshape current seasonal variability; the degree varies between regions. High-resolution climate projections are thereby necessary to support further regional impact assessment. In this study, a gated recurrent unit-based recurrent neural network statistical downscaling model is developed to project future temperature change (both daily maximum temperature and minimum temperature) over Metro Vancouver, Canada. Three indexes (i.e., coefficient of determinant, root mean square error, and correlation coefficient) are estimated for model validation, indicating the developed model’s competitive ability to simulate the regional climatology of Metro Vancouver. Monthly comparisons between simulation and observation also highlight the effectiveness of the proposed downscaling method. The projected results (under one model set-up, WRF-MPI-ESM-LR, RCP 8.5) show that both maximum and minimum temperature will consistently increase between 2,035 and 2,100 over the 12 selected meteorological stations. By the end of this century, the daily maximum temperature and minimum temperature are expected to increase by an average of 2.91°C and 2.98°C. Nevertheless, with trivial increases in summer and significant rises in winter and spring, the seasonal variability will be reduced substantially, which indicates less energy requirement over Metro Vancouver. This is quite favorable for Metro Vancouver to switch from fossil fuel-based energy sources to renewable and clean forms of energy. Further, the cold extremes’ frequency of minimum temperature will be reduced as expected; however, despite evident warming trend, the hot extremes of maximum temperature will become less frequent.


Sign in / Sign up

Export Citation Format

Share Document