scholarly journals Sheep Grazing Enhances Coarse Relative to Microbial Organic Carbon in Dryland Cropping Systems

2016 ◽  
Vol 5 (2) ◽  
pp. 1
Author(s):  
Joy L. Barsotti ◽  
Upendra M. Sainju ◽  
Andrew W. Lenssen ◽  
Zach J. Miller ◽  
Patrick G. Hatfield

Sheep (<em>Ovis aries </em>L<em>.</em>) grazing, a cost-effective method of weed control compared with herbicide application and tillage, may influence soil C fractions by consuming crop residue and weeds and returning C through feces and urine to the soil. We examined the effect of three weed management practices (sheep grazing, herbicide application, and tillage) and two cropping sequences (continuous spring wheat [<em>Triticum aestivum </em>L.] [CSW] and spring wheat-pea [<em>Pisum sativum </em>L.]/barley [<em>Hordeum vulgare </em>L.] mixture hay-fallow [W-P/B-F]) on soil microbial biomass C (MBC), potential C mineralization (PCM), and particulate organic C (POC) in relation to soil organic C (SOC) at the 0- to 30-cm depth from 2009 to 2011 in southwestern Montana. The MBC at 0 to 5 cm was greater with tillage on CSW than tillage on W-P/B-F in 2009 and 2011, but was greater with herbicide application on CSW than tillage on CSW in 2010. The POC at 0 to 5 cm and 15 to 30 cm was greater with sheep grazing than herbicide application on CSW and W-P/B-F, but at 5 to 15 cm was greater with grazing on CSW. The MBC, PCM, and POC at all depths decreased from 2009 to 2011. Crop residue incorporation into the soil increased MBC with tillage on CSW. Lower proportions of labile than nonlabile organic matter through feces and urine probably reduced MBC at the soil surface, but increased POC with sheep grazing compared with herbicide application on CSW and W-P/B-F. Sheep grazing may increase coarse soil organic matter compared with microbial biomass in dryland cropping systems.

2020 ◽  
Vol 25 (6) ◽  
pp. 929-952
Author(s):  
Martin A. Bolinder ◽  
Felicity Crotty ◽  
Annemie Elsen ◽  
Magdalena Frac ◽  
Tamás Kismányoky ◽  
...  

Abstract International initiatives are emphasizing the capture of atmospheric CO2 in soil organic C (SOC) to reduce the climatic footprint from agroecosystems. One approach to quantify the contribution of management practices towards that goal is through analysis of long-term experiments (LTEs). Our objectives were to analyze knowledge gained in literature reviews on SOC changes in LTEs, to evaluate the results regarding interactions with pedo-climatological factors, and to discuss disparities among reviews in data selection criteria. We summarized mean response ratios (RRs) and stock change rate (SCR) effect size indices from twenty reviews using paired comparisons (N). The highest RRs were found with manure applications (30%, N = 418), followed by aboveground crop residue retention and the use of cover crops (9–10%, N = 995 and 129), while the effect of nitrogen fertilization was lowest (6%, N = 846). SCR for nitrogen fertilization exceeded that for aboveground crop residue retention (233 versus 117 kg C ha−1 year−1, N = 183 and 279) and was highest for manure applications and cover crops (409 and 331 kg C ha−1 year−1, N = 217 and 176). When data allows, we recommend calculating both RR and SCR because it improves the interpretation. Our synthesis shows that results are not always consistent among reviews and that interaction with texture and climate remain inconclusive. Selection criteria for study durations are highly variable, resulting in irregular conclusions for the effect of time on changes in SOC. We also discuss the relationships of SOC changes with yield and cropping systems, as well as conceptual problems when scaling-up results obtained from field studies to regional levels.


Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2190
Author(s):  
Ranjan Laik ◽  
B. H. Kumara ◽  
Biswajit Pramanick ◽  
Santosh Kumar Singh ◽  
Nidhi ◽  
...  

Labile soil organic matter pools (LSOMp) are believed to be the most sensitive indicator of soil quality when it is changed rapidly with varied management practices. In sub-tropical climates, the turnover period of labile pools is quicker than in temperate climates. Organic amendments are of importance in improve the LSOMp for a temperate climate and may be helpful in sub-tropical climates as well. Hence, the status of LSOMp was studied in long term farmyard manure (FYM) amended soils under wheat (Triticum aestivum L.) and pearl millet (Pennisetum glaucum L.) cropping systems in sub-tropical arid conditions. At the same time, we also attempt to determine the impact of mineral nitrogen (N) application in these pools. In this study, dissolved organic matter (DOM), microbial biomass (MB), and light fraction (LF) were isolated in the management practices involving different modes and rates of FYM applications along with the application of nitrogenous fertilizer. C and N contents of the labile pools were analyzed in the soil samples at different periods after FYM applications. Among the different pools, microbial biomass carbon (MBC) and dissolved organic carbon (DOC) were changed significantly with different rates and modes of FYM application and mineral N application. Application of FYM at 15 Mg ha−1 in both the seasons + 120 kg ha−1 mineral N resulted in significantly higher MBC and DOC as compared to all of the other treatments. This treatment also resulted in 13.75% and 5.8% more MBC and DOC, respectively, as compared to the amount of MBC and DOC content in the control plot where FYM and mineral N were not applied. Comparing the labile organic matter pools of 45 years of FYM amendment with initial values, it was found that the dissolved organic carbon, microbial biomass carbon, and light fraction carbon were increased up to the maximum extent of about 600, 1200, and 700 times, respectively. The maximum amount of DOM (562 mg kg−1 of DOC and 70.1 mg kg−1 of DON), MB (999 mg kg−1 of MBC and 158.4 mg kg−1 of MBN), LF (2.61 g kg−1 of LFC and 154.6 g kg−1 of LFN) were found in case of both season applied FYM as compared to either summer or winter applied FYM. Concerning the different rates of FYM application, 15 Mg ha−1 FYM also resulted in a significantly higher amount of DOM, MB, and LF as compared to other FYM rates (i.e., 5 Mg ha−1 and 10 Mg ha−1). Amongst different pools, MB was found to be the most sensitive to management practices in this study. From this study, it was found that the long-term FYM amendment in sub-tropical soil along with mineral N application can improve the LSOMp of the soil. Thus, it can be recommended that the application of FYM at 15 Mg ha−1 in summer and winter with +120 kg ha−1 mineral N can improve SOC and its labile pools in subtropical arid soils. Future studies on LSOMp can be carried out by considering different cropping systems of subtropical climate.


1981 ◽  
Vol 61 (2) ◽  
pp. 211-224 ◽  
Author(s):  
R. P. VORONEY ◽  
J. A. VAN VEEN ◽  
E. A. PAUL

The amounts of organic matter in native prairie and in an adjacent cultivated field were compared with the output from a simulation model describing organic matter dynamics. The effects of past and possible future soil management practices, and the loss of organic C through rainfall erosion were incorporated into the simulation study. Seventy years of cultivation increased the bulk density of the A horizon by an average of 16% along the catena of a Black Chernozemic soil. Organic C had decreased by 36% in the soil profile at the mid-slope position. Losses of organic N were 5–10% less. Depletion of organic C and N from the Ah horizon accounted for > 90% of the total loss from the soil profile. Therefore, extrapolation of data from surface soil, based solely on changes in the concentration of organic C and N, could result in an overestimation of organic matter losses from soils. Microbial biomass in the Ap horizon of the crop-summer-fallow site was 30% less than in the Ah horizon of the native prairie. The model predicted an immediate rise in microbial biomass C upon cultivation of the native prairie due to a large initial input of grassland litter and roots. Subsequently, the microbial biomass C decreased and approached a steady-state level which was 25% less than in the native prairie. The model indicates that large quantities of N released during the initial years of cultivation would not have been totally utilized by the cultivated crops, therefore resulting in major losses to the environment. However, now the organic matter is reaching a steady-state level and only small net release of N can be expected; external N sources are required for optimum crop production. Management practices such as straw removal and cropping sequence have short-term effects on the rate of depletion of soil organic C. Similar equilibrium levels of soil organic matter were predicted after 100 yr of cultivation in simulation studies that did not consider erosion losses. The inclusion of rainfall erosion losses indicated that major organic C and other nutrient losses will occur in management practices that include significant portions of fallow in the cropping sequence.


Soil Research ◽  
2019 ◽  
Vol 57 (2) ◽  
pp. 200 ◽  
Author(s):  
J. Somasundaram ◽  
M. Salikram ◽  
N. K. Sinha ◽  
M. Mohanty ◽  
R. S. Chaudhary ◽  
...  

Conservation agriculture (CA) including reduced or no-tillage and crop residue retention, is known to be a self–sustainable system as well as an alternative to residue burning. The present study evaluated the effect of reduced tillage coupled with residue retention under different cropping systems on soil properties and crop yields in a Vertisol of a semiarid region of central India. Two tillage systems – conventional tillage (CT) with residue removed, and reduced tillage (RT) with residue retained – and six major cropping systems of this region were examined after 3 years of experimentation. Results demonstrated that soil moisture content, mean weight diameter, percent water stable aggregates (&gt;0.25mm) for the 0–15cm soil layer were significantly (Pmoderately labile&gt;less labile. At the 0–15cm depth, the contributions of moderately labile, less labile and non-labile C fractions to total organic C were 39.3%, 10.3% and 50.4% respectively in RT and corresponding values for CT were 38.9%, 11.7% and 49.4%. Significant differences in different C fractions were observed between RT and CT. Soil microbial biomass C concentration was significantly higher in RT than CT at 0–15cm depth. The maize–chickpea cropping system had significantly (P–1 followed by soybean+pigeon pea (2:1) intercropping (3.50 t ha–1) and soybean–wheat cropping systems (2.97 t ha–1). Thus, CA practices could be sustainable management practices for improving soil health and crop yields of rainfed Vertisols in these semiarid regions.


1993 ◽  
Vol 73 (1) ◽  
pp. 39-50 ◽  
Author(s):  
D. A. Angers ◽  
N. Bissonnette ◽  
A. Légère ◽  
N. Samson

Crop rotations and tillage practices can modify not only the total amount of organic matter (OM) in soils but also its composition. The objective of this study was to determine the changes in total organic C, microbial biomass C (MBC), carbohydrates and alkaline phosphatase activity induced by 4 yr of different rotation and tillage combinations on a Kamouraska clay in La Pocatière, Quebec. Two rotations (continuous barley (Hordeum vulgare L.) versus a 2-yr barley–red clover (Trifolium pratense L.) rotation) and three tillage treatments (moldboard plowing (MP), chisel plowing (CP) and no-tillage (NT)) were compared in a split-plot design. Total organic C was affected by the tillage treatments but not by the rotations. In the top soil layer (0–7.5 cm), NT and CP treatments had C contents 20% higher than the MP treatment. In the same soil layer, MBC averaged 300 mg C kg−1 in the MP treatment and up to 600 mg C kg−1 in the NT soil. Hot-water-extractable and acid-hydrolyzable carbohydrates were on average 40% greater under reduced tillage than under MP. Both carbohydrate fractions were also slightly larger in the rotation than in the soil under continuous barley. The ratios of MBC and carbohydrate C to total organic C suggested that there was a significant enrichment of the OM in labile forms as tillage intensity was reduced. Alkaline phosphatase activity was 50% higher under NT and 20% higher under CP treatments than under MP treatment and, on average, 15% larger in the rotation than in the continuous barley treatment. Overall, the management-induced differences were slightly greater in the top layer (0–7.5 cm) than in the lower layer of the Ap horizon (7.5–15 cm). All the properties measured were highly correlated with one another. They also showed significant temporal variations that were, in most cases, independent of the treatments. Four years of conservation tillage and, to a lesser extent, rotation with red clover resulted in greater OM in the top soil layer compared with the more intensive systems. This organic matter was enriched in labile forms. Key words: Soil management, soil quality, organic matter, carbohydrates, microbial biomass, phosphatase


2001 ◽  
Vol 81 (1) ◽  
pp. 21-31 ◽  
Author(s):  
E G Gregorich ◽  
C F Drury ◽  
J A Baldock

Legume-based cropping systems could help to increase crop productivity and soil organic matter levels, thereby enhancing soil quality, as well as having the additional benefit of sequestering atmospheric C. To evaluate the effects of 35 yr of maize monoculture and legume-based cropping on soil C levels and residue retention, we measured organic C and 13C natural abundance in soils under: fertilized and unfertilized maize (Zea mays L.), both in monoculture and legume-based [maize-oat (Avena sativa L.)-alfalfa (Medicago sativa L.)-alfalfa] rotations; fertilized and unfertilized systems of continuous grass (Poa pratensis L.); and under forest. Solid state 13C nuclear magnetic resonance (NMR) was used to chemically characterize the organic matter in plant residues and soils. Soils (70-cm depth) under maize cropping had about 30-40% less C, and those under continuous grass had about 16% less C, than those under adjacent forest. Qualitative differences in crop residues were important in these systems, because quantitative differences in net primary productivity and C inputs in the different agroecosystems did not account for observed differences in total soil C. Cropping sequence (i.e., rotation or monoculture) had a greater effect on soil C levels than application of fertilizer. The difference in soil C levels between rotation and monoculture maize systems was about 20 Mg C ha-1. The effects of fertilization on soil C were small (~6 Mg C ha-1), and differences were observed only in the monoculture system. The NMR results suggest that the chemical composition of organic matter was little affected by the nature of crop residues returned to the soil. The total quantity of maize-derived soil C was different in each system, because the quantity of maize residue returned to the soil was different; hence the maize-derived soil C ranged from 23 Mg ha-1 in the fertilized and 14 Mg ha-1 in the unfertilized monoculture soils (i.e., after 35 maize crops) to 6-7 Mg ha-1 in both the fertilized and unfertilized legume-based rotation soils (i.e., after eight maize crops). The proportion of maize residue C returned to the soil and retained as soil organic C (i.e., Mg maize-derived soil C/Mg maize residue) was about 14% for all maize cropping systems. The quantity of C3-C below the plow layer in legume-based rotation was 40% greater than that in monoculture and about the same as that under either continuous grass or forest. The soil organic matter below the plow layer in soil under the legume-based rotation appeared to be in a more biologically resistant form (i.e., higher aromatic C content) compared with that under monoculture. The retention of maize residue C as soil organic matter was four to five times greater below the plow layer than that within the plow layer. We conclude that residue quality plays a key role in increasing the retention of soil C in agroecosystems and that soils under legume-based rotation tend to be more “preservative” of residue C inputs, particularly from root inputs, than soils under monoculture. Key words: Soil carbon, 13C natural abundance, 13C nuclear magnetic resonance, maize cropping, legumes, root carbon


Soil Research ◽  
2001 ◽  
Vol 39 (3) ◽  
pp. 435 ◽  
Author(s):  
R. C. Dalal ◽  
K. Y. Chan

The Australian cereal belt stretches as an arc from north-eastern Australia to south-western Australia (24˚S–40˚S and 125˚E–147˚E), with mean annual temperatures from 14˚C (temperate) to 26˚C (subtropical), and with annual rainfall ranging from 250 mm to 1500 mm. The predominant soil types of the cereal belt include Chromosols, Kandosols, Sodosols, and Vertosols, with significant areas of Ferrosols, Kurosols, Podosols, and Dermosols, covering approximately 20 Mha of arable cropping and 21 Mha of ley pastures. Cultivation and cropping has led to a substantial loss of soil organic matter (SOM) from the Australian cereal belt; the long-term SOM loss often exceeds 60% from the top 0–0.1 m depth after 50 years of cereal cropping. Loss of labile components of SOM such as sand-size or particulate SOM, microbial biomass, and mineralisable nitrogen has been even higher, thus resulting in greater loss in soil productivity than that assessed from the loss of total SOM alone. Since SOM is heterogeneous in nature, the significance and functions of its various components are ambiguous. It is essential that the relationship between levels of total SOM or its identif iable components and the most affected soil properties be established and then quantif ied before the concentrations or amounts of SOM and/or its components can be used as a performance indicator. There is also a need for experimentally verifiable soil organic C pools in modelling the dynamics and management of SOM. Furthermore, the interaction of environmental pollutants added to soil, soil microbial biodiversity, and SOM is poorly understood and therefore requires further study. Biophysically appropriate and cost-effective management practices for cereal cropping lands are required for restoring and maintaining organic matter for sustainable agriculture and restoration of degraded lands. The additional benefit of SOM restoration will be an increase in the long-term greenhouse C sink, which has the potentialto reduce greenhouse emissions by about 50 Mt CO2 equivalents/year over a 20-year period, although current improved agricultural practices can only sequester an estimated 23% of the potential soil C sink.


Soil Research ◽  
1999 ◽  
Vol 37 (2) ◽  
pp. 279 ◽  
Author(s):  
M. J. Bell ◽  
P. W. Moody ◽  
S. A. Yo ◽  
R. D. Connolly

Chemical and physical degradation of Red Ferrosols in eastern Australia is a major issue necessitating the development of more sustainable cropping systems. This paper derives critical concentrations of the active (permanganate-oxidisable) fraction of soil organic matter (C1) which maximise soil water recharge and minimise the likelihood of surface runoff in these soils. Ferrosol soils were collected from commercial properties in both north and south Queensland, while additional data were made available from a similar collection of Tasmanian Ferrosols. Sites represented a range of management histories, from grazed and ungrazed grass pastures to continuously cropped soil under various tillage systems. The concentration of both total carbon (C) and C1 varied among regions and farming systems. C1 was the primary factor controlling aggregate breakdown, measured by the percentage of aggregates <0·125 mm (P125) in the surface crust after simulated rainfall. The rates of change in P125 per unit change in C1 were not significantly different (P < 0·05) for soils from the different localities. However, soils from the coastal Burnett (south-east Queensland) always produced lower P125 (i.e. less aggregate breakdown) than did soils from the inland Burnett and north Queensland locations given the same concentration of C1. This difference was not associated with a particular land use. The ‘critical’ concentrations of C1 for each region were taken as the C1 concentrations that would allow an infiltration rate greater than or equal to the intensity of a 1 in 1 or 1 in 10 year frequency rainfall event of 30 min duration. This analysis also provided an indication of the risk associated with the concentrations of C1 currently characterising each farming system in each rainfall environment. None of the conventionally tilled Queensland Ferrosols contained sufficient C1 to cope with rainfall events expected to occur with a 1 in 10 frequency, while in many situations the C1 concentration was sufficiently low that runoff events would be expected on an annual basis. Our data suggest that management practices designed both to maximise C inputs and to maintain a high proportion of active C should be seen as essential steps towards developing a more sustainable cropping system.


2006 ◽  
Vol 21 (1) ◽  
pp. 49-59 ◽  
Author(s):  
B.J. Wienhold ◽  
J.L. Pikul ◽  
M.A. Liebig ◽  
M.M. Mikha ◽  
G.E. Varvel ◽  
...  

AbstractSoils perform a number of essential functions affecting management goals. Soil functions were assessed by measuring physical, chemical, and biological properties in a regional assessment of conventional (CON) and alternative (ALT) management practices at eight sites within the Great Plains. The results, reported in accompanying papers, provide excellent data for assessing how management practices collectively affect agronomic and environmental soil functions that benefit both farmers and society. Our objective was to use the regional data as an input for two new assessment tools to evaluate their potential and sensitivity for detecting differences (aggradation or degradation) in management systems. The soil management assessment framework (SMAF) and the agro-ecosystem performance assessment tool (AEPAT) were used to score individual soil properties at each location relative to expected conditions based on inherent soil-forming factors and to compute index values that provide an overall assessment of the agronomic and environmental impact of the CON and ALT practices. SMAF index values were positively correlated with grain yield (an agronomic function) and total organic matter (an agronomic and environmental function). They were negatively correlated with soil nitrate concentration at harvest (an indicator of environmental function). There was general agreement between the two assessment tools when used to compare management practices. Users can measure a small number of soil properties and use one of these tools to easily assess the effectiveness of soil management practices. A higher score in either tool identifies more environmentally and agronomically sustainable management. Temporal variability in measured indicators makes dynamic assessments of management practices essential. Water-filled pore space, aggregate stability, particulate organic matter, and microbial biomass were sensitive to management and should be included in studies aimed at improving soil management. Reductions in both tillage and fallow combined with crop rotation has resulted in improved soil function (e.g., nutrient cycling, organic C content, and productivity) throughout the Great Plains.


Sign in / Sign up

Export Citation Format

Share Document