A GENERALIZATION OF CERTAIN CLASS OF ANALYTIC FUNCTIONS WITH NEGATIVE COEFFICIENTS
We introduce the subclass $T^*(A,B,n,a)$ ($-1 \le A < B\le 1$, $0 < B \le 1$, $n \ge 0$, and $0\le\alpha <1$) of analytic func;tions with negative coefficients by the operator $D^n$. Coefficient estimates, distortion theorems, closure theorems and radii of close-to-convexety, starlikeness and convexity for the class $T^*(A,B,n,a)$ are determined. We also prove results involving the modified Hadamard product of two functions associated with the class $T^*(A,B,n,a)$. Also we obtain Several interesting distortion theorems for certain fractional operators .of functions in the class $T^*(A,B,n,a)$. Also we obtain class perserving integral operator of the form \[F(z)=\afrc{c+1}{z^c}\int_0^z t^{c-1}f(t) dt, \quad c>-1\] for the class $T^*(A,B,n,a)$. Conversely when $F(z) \in T*(A,B,n,a)$, radius of univalence of $f(z)$ defined by the above equation is obtained.