scholarly journals Inverse scattering problem for Sturm-Liouville operator on non-compact A-graph. Uniqueness result.

2015 ◽  
Vol 46 (4) ◽  
pp. 401-422 ◽  
Author(s):  
Mikhail Ignatyev

We consider a connected metric graph with the following property: each two cycles can have at most one common point. Such graphs are called A-graphs. On noncompact A-graph we consider a scattering problem for Sturm--Liouville differential operator with standard matching conditions in the internal vertices. Transport, spectral and scattering problems for differential operators on graphs appear frequently in mathematics, natural sciences and engineering. In particular, direct and inverse problems for such operators are used to construct and study models in mechanics, nano-electronics, quantum computing and waveguides. The most complete results on (both direct and inverse) spectral problems were achieved in the case of Sturm--Liouville operators on compact graphs, in the noncompact case there are no similar general results. In this paper, we establish some properties of the spectral characteristics and investigate the inverse problem of recovering the operator from the scattering data. A uniqueness theorem for such inverse problem is proved.

2019 ◽  
Vol 27 (3) ◽  
pp. 439-443
Author(s):  
Vjacheslav Yurko

Abstract Second order differential operators on the half-line with complex-valued weights are considered. Properties of spectral characteristics are established, and the inverse problem of recovering operator’s coefficients from the given Weyl-type function is studied. The uniqueness theorem is proved for this class of nonlinear inverse problems, and a number of examples are provided.


Author(s):  
Natalia Bondarenko

AbstractWe consider a pencil of matrix Sturm–Liouville operators on a finite interval. We study the properties of its spectral characteristics and inverse problems that consist in the recovering of the pencil by the spectral data, that is, eigenvalues and so-called weight matrices. This inverse problem is reduced to a linear equation in a Banach space by the method of spectral mappings. A constructive algorithm for the solution of the inverse problem is provided.


2012 ◽  
Vol 43 (2) ◽  
pp. 289-299 ◽  
Author(s):  
Vjacheslav Yurko

Non-selfadjoint Sturm-Liouville operators on a finite interval with nonseparated boundary conditions are studied. We establish properties of the spectral characteristics and investigate an inverse problem of recovering the operators from their spectral data. For this inverse problem we prove a uniqueness theorem and provide a procedure for constructing the solution.


2017 ◽  
Vol 48 (1) ◽  
pp. 49-59 ◽  
Author(s):  
Vjacheslav Anatoljevich Yurko ◽  
Sergey Alexandrovich Buterin ◽  
Milenko Pikula

Non-selfadjoint second-order differential operators with a constant delay are studied. We establish properties of the spectral characteristics and investigate the inverse problem of recovering operators from their spectra. For this inverse problem the uniqueness theorem is proved.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Jiyu Sun ◽  
Yuhui Han

Recently, a new method, called the extended sampling method (ESM), was proposed for the inverse scattering problems. Similar to the classical linear sampling method (LSM), the ESM is simple to implement and fast. Compared to the LSM which uses full-aperture scattering data, the ESM only uses the scattering data of one incident wave. In this paper, we generalize the ESM for the inverse acoustic source problems. We show that the indicator function of ESM, which is defined using the approximated solutions of some linear ill-posed integral equations, is small when the support of the source is contained in the sampling disc and is large when the source is outside. This behavior is similar to the ESM for the inverse scattering problem. Numerical examples are presented to show the effectiveness of the method.


2017 ◽  
Vol 25 (6) ◽  
Author(s):  
Hidayat M. Huseynov ◽  
Agil K. Khanmamedov ◽  
Rza I. Aleskerov

AbstractThis paper investigates the inverse scattering problem for a discrete Dirac system on the entire line with coefficients that stabilize to zero in one direction. We develop an algorithm for solving the inverse problem of reconstruction of coefficients. We derive a necessary and a sufficient condition on the scattering data so that the inverse problem is uniquely solvable.


2014 ◽  
Vol 12 (3) ◽  
Author(s):  
Vyacheslav Yurko

AbstractWe study inverse spectral problems for ordinary differential equations on compact star-type graphs when differential equations have different orders on different edges. As the main spectral characteristics we introduce and study the so-called Weyl-type matrices which are generalizations of the Weyl function (m-function) for the classical Sturm-Liouville operator. We provide a procedure for constructing the solution of the inverse problem and prove its uniqueness.


2001 ◽  
Vol 09 (02) ◽  
pp. 655-670 ◽  
Author(s):  
PIERLUIGI MAPONI ◽  
FRANCESCO ZIRILLI

We consider the problem of the reconstruction of the shape of an obstacle from some knowledge of the scattered waves generated from the interaction of the obstacle with known incident waves. More precisely we study this inverse scattering problem considering acoustic waves or electromagnetic waves. In both cases the waves are assumed harmonic in time. The obstacle is assumed cylindrically symmetric and some special incident waves are considered. This allows us to formulate the two scattering problems, i.e. the acoustic scattering problem and the electromagnetic scattering problem, as a boundary value problem for the scalar Helmholtz equation in two independent variables. The numerical algorithms proposed are based on the Herglotz Function Method, which has been introduced by Colton and Monk.1 We report the results obtained with these algorithms in the reconstruction of simple obstacles with Lipschitz boundary using experimental electromagnetic scattering data, that is the Ipswich Data2,3 and in the reconstruction of "multiscale obstacles" using synthetic acoustic scattering data.


2011 ◽  
Vol 42 (3) ◽  
pp. 247-258 ◽  
Author(s):  
Vjacheslav Yurko

Non-self-adjoint Sturm-Liouville differential operators on the half-line with a boundary condition depending polynomially on the spectral parameter are studied. We investigate the inverse problem of recovering the operator from the Weyl function. For this inverse problem we provide necessary and suffcient conditions for its solvability along with a procedure for constructing its solution by the method of spectral mappings.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Konstantin V. Dmitriev ◽  
Olga D. Rumyantseva

Abstract Research presented in this paper was initiated by the publication [A. D. Agaltsov and R. G. Novikov, Examples of solving the inverse scattering problem and the equations of the Veselov–Novikov hierarchy from the scattering data of point potentials, Russian Math. Surveys 74 (2019), 3, 373–386] and is based on its results. Two sets of the complex monopole scattering coefficients are distinguished among the possible values of these coefficients for nonabsorbing inhomogeneities. These sets differ in phases of the scattering coefficients. In order to analyze the features and possibilities of reconstructing the inhomogeneities of both sets, on the one hand, the inverse problem is solved for each given value of the monopole scattering coefficient using the Novikov functional algorithm. On the other hand, the scatterer is selected in the form of a homogeneous cylinder with the monopole scattering coefficient that coincides with the given one. The results obtained for the monopole inhomogeneity and for the corresponding cylindrical scatterer are compared in the coordinate and spatial-spectral spaces. The physical reasons for the similarities and differences in these results are discussed when the amplitude of the scattering coefficient changes, as well as when passing from one set to another.


Sign in / Sign up

Export Citation Format

Share Document