Thermal Radiation Effects on the Mixed Convection Stagnation-Point Flow in a Jeffery Fluid

2011 ◽  
Vol 66 (10-11) ◽  
pp. 606-614 ◽  
Author(s):  
Tasawar Hayat ◽  
Sabir Ali Shehzad ◽  
Muhammad Qasim ◽  
Saleem Obaidat

This study describes the mixed convection stagnation point flow and heat transfer of a Jeffery fluid towards a stretching surface. Mathematical formulation is given in the presence of thermal radiation. The Rosseland approximation is used to describe the radiative heat flux. Similarity transformations are employed to reduce the partial differential equations into the ordinary differential equations which are then solved by a homotopy analysis method (HAM). A comparative study is made with the known numerical solutions in a limiting sense and an excellent agreement is noted. The characteristics of involved parameters on the dimensionless velocity and temperature are also examined. It is noticed that the velocity increases with an increase in Deborah number. Further, the temperature is a decreasing function of mixed convection parameter. We further found that for fixed values of other parameters, the local Nusselt number increases by increasing suction parameter and Deborah number.

Energies ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 788 ◽  
Author(s):  
Anuar Jamaludin ◽  
Roslinda Nazar ◽  
Ioan Pop

In this study we numerically examine the mixed convection stagnation-point flow of a nanofluid over a vertical stretching/shrinking sheet in the presence of suction, thermal radiation and a heat source/sink. Three distinct types of nanoparticles, copper (Cu), alumina (Al2O3) and titania (TiO2), were investigated with water as the base fluid. The governing partial differential equations were converted into ordinary differential equations with the aid of similarity transformations and solved numerically by utilizing the bvp4c programme in MATLAB. Dual (upper and lower branch) solutions were determined within a particular range of the mixed convection parameters in both the opposing and assisting flow regions and a stability analysis was carried out to identify which solutions were stable. Accordingly, solutions were gained for the reduced skin friction coefficients, the reduced local Nusselt number, along with the velocity and temperature profiles for several values of the parameters, which consists of the mixed convection parameter, the solid volume fraction of nanoparticles, the thermal radiation parameter, the heat source/sink parameter, the suction parameter and the stretching/shrinking parameter. Furthermore, the solutions were presented in graphs and discussed in detail.


Author(s):  
S. T. Hussain ◽  
Rizwan Ul Haq ◽  
N. F. M. Noor ◽  
S. Nadeem

Abstract Present phenomenon is dedicated to analyze the combine effects of linear and non-linear Rosseland thermal radiations for stagnation point flow along a vertically stretching surface. For better variation in fluid flow and heat transfer, mixed convection is also considered to sustain this mechanism for significant influence. After incorporating these effects, the pertinent mathematical model is constructed in the form of non-linear partial differential equations and then be transformed into the system of coupled ordinary differential equations with the help of similarity transformation to be further solved numerically. Significant difference in the heat transfer enhancement can be observed through temperature profiles and tables of Nusselt number. Though histogram and isotherms plots, finally it is concluded that non-linear radiation provides better heat transfer rate at the surface of sheet as compare to the linear or absence of radiation effects.


Author(s):  
Ioan Pop ◽  
Kohi Naganthran ◽  
Roslinda Nazar

Purpose – The purpose of this paper is to analyse numerically the steady stagnation-point flow of a viscous and incompressible fluid over continuously non-aligned stretching or shrinking surface in its own plane in a water-based nanofluid which contains three different types of nanoparticles, namely, Cu, Al2O3 and TiO2. Design/methodology/approach – Similarity transformation is used to convert the system of boundary layer equations which are in the form of partial differential equations into a system of ordinary differential equations. The system of similarity governing equations is then reduced to a system of first-order differential equations and solved numerically using the bvp4c function in Matlab software. Findings – Unique solution exists when the surface is stretched and dual solutions exist as the surface shrunk. For the dual solutions, stability analysis has revealed that the first solution (upper branch) is stable and physically realizable, while the second solution (lower branch) is unstable. The effect of non-alignment is huge for the shrinking surface which is in contrast with the stretching surface. Practical implications – The results obtained can be used to explain the characteristics and applications of nanofluids, which are widely used as coolants, lubricants, heat exchangers and micro-channel heat sinks. This problem also applies to some situations such as materials which are manufactured by extrusion, production of glass-fibre and shrinking balloon. In this kind of circumstance, the rate of cooling and the stretching/shrinking process play an important role in moulding the final product according to preferable features. Originality/value – The present results are original and new for the study of fluid flow and heat transfer over a stretching/shrinking surface for the problem considered by Wang (2008) in a viscous fluid and extends to nanofluid by using the Tiwari and Das (2007) model.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Liaquat Ali Lund ◽  
Zurni Omar ◽  
Ilyas Khan ◽  
Dumitru Baleanu ◽  
Kottakkaran Sooppy Nisar

Abstract In this paper, the rate of heat transfer of the steady MHD stagnation point flow of Casson fluid on the shrinking/stretching surface has been investigated with the effect of thermal radiation and viscous dissipation. The governing partial differential equations are first transformed into the ordinary (similarity) differential equations. The obtained system of equations is converted from boundary value problems (BVPs) to initial value problems (IVPs) with the help of the shooting method which then solved by the RK method with help of maple software. Furthermore, the three-stage Labatto III-A method is applied to perform stability analysis with the help of a bvp4c solver in MATLAB. Current outcomes contradict numerically with published results and found inastounding agreements. The results reveal that there exist dual solutions in both shrinking and stretching surfaces. Furthermore, the temperature increases when thermal radiation, Eckert number, and magnetic number are increased. Signs of the smallest eigenvalue reveal that only the first solution is stable and can be realizable physically.


2016 ◽  
Vol 12 (2) ◽  
pp. 345-361 ◽  
Author(s):  
Najeeb Alam Khan ◽  
Sidra Khan ◽  
Fatima Riaz

Purpose – The purpose of this paper is to study the three dimensional, steady and incompressible flow of non-Newtonian rate type Maxwell fluid, for stagnation point flow toward an off-centered rotating disk. Design/methodology/approach – The governing partial differential equations are transformed to a system of non-linear ordinary differential equations by conventional similarity transformations. The non-perturbation technique, homotopy analysis method (HAM) is employed for the computation of solutions. And, the solution is computed by using the well-known software Mathematica 10. Findings – The effects of rotational parameter and Deborah number on radial, azimuthal and induced velocity functions are investigated. The results are presented in graphical form. The convergence control parameter is also plotted for velocity profiles. The comparison with the previous results is also tabulated. The skin friction coefficients are also computed for different values of Deborah number. Originality/value – This paper studies the effect of rotation and Deborah number on off-centered rotating disk has been observed and presented graphically.


Author(s):  
Nurul Amira Zainal ◽  
Kohilavani Naganthran ◽  
Roslinda Nazar

The study of unsteady flow is essential in various engineering systems, for instance, the periodic fluid motion and start-up process. Therefore, this numerical study focuses on examining the unsteady magnetohydrodynamics (MHD) rear stagnation-point flow in Al2O3-Cu/H2O hybrid nanofluid past a permeable stretching/shrinking surface with the impact of heat generation/absorption. By choosing a suitable similarity transformation, partial differential equations are transformed into a system of nonlinear ordinary differential equations and solved using the bvp4c function in the MATLAB package. The effects of the solution domain’s operating parameters are analysed, and dual solutions are observable as the sheet shrinks. It is found that the addition of the suction parameter escalates the heat transfer efficiency. Eventually, the existence of the unsteadiness parameter and the heat generation/absorption effect significantly encourage heat transfer deterioration.


2010 ◽  
Vol 65 (8-9) ◽  
pp. 711-719 ◽  
Author(s):  
Tasawar Hayat ◽  
Meraj Mustafa

This study is concerned with the effect of thermal radiation on the unsteady mixed convection flow of a Jeffrey fluid past a porous vertical stretching surface. The arising problems of flow and heat transfer are solved analytically by employing homotopy analysis method (HAM). It is observed that the flow field is influenced appreciably by the unsteadiness parameter ζ , suction parameter S, mixed convection parameter λ , Deborah number β , Prandtl number Pr, and the radiation parameter Nr. Our performed computations depict that the heat transfer rate is increased with increasing values of Pr, Nr, and ζ


Sign in / Sign up

Export Citation Format

Share Document