Quantum-Chemical Ab Initio Calculations on Ala-(C5H5Al) and Galabenzene (C5H5Ga)

2014 ◽  
Vol 69 (7) ◽  
pp. 349-359 ◽  
Author(s):  
Stefanie Mersmann ◽  
Halima Mouhib ◽  
Matthias Baldofski ◽  
Gerhard Raabe

1Quantum-chemical ab initio and time-dependent density functional theory (TD-DFT) calculations employing various basis sets were used to elucidate the spatial as well as the electronic structure of C5H5Al () and C5H5Ga (2) (ala- and galabenzene). The lowest closed shell singlet states of both compounds were found to have a non-planar structure of CS symmetry with C-X-C bond angles of about 116° (MP2/6-311++G**) and 125° (CCSD/aug-cc-pVDZ). At approximately 103°, the corresponding angles of the lowest triplets are significantly smaller. The lowest triplet state of alabenzene is also non-planar (CS) at the MP2 level while optimization with the CCSD and the CASPT2 method resulted in planar structures with C2v symmetry. The corresponding state of galabenzene has C2v symmetry at all levels of optimization. The relative stability of the lowest closed shell singlet and the lowest triplet (ΔE(T1-S0)) state is small and its sign even strongly method-dependent. However, according to the highest levels of theory applied in this study the singlet states of both molecules are slightly lower in energy than the corresponding triplets with singlet/triplet gaps between about 0.5 and 5.8 kcal/mol in favour of the singlet states. Most of the applied methods give a slightly smaller splitting for ala- than for galabenzene. Independent of the applied method (TD-DFT/CAM-B3LYP/6-311++G(3df,3pd)//MP2/6- 311++G** or SAC-CI/6-31++G(3df,3pd)//MP2/6-311++G**), the general shape of the calculated UV/VIS spectral curves are quite similar for the lowest singlet states of ala- and galabenzene, and the same applies to the spectra of the normal modes. The calculated UV/VIS spectra of C5H5Al and C5H5Ga are featured by long wavelength bands of moderate intensity around 900 nm at the TD-DFT and between 1300 and 1500 nm at the SAC-CI level. According to both methods these bands are predominantly due to HOMO(π)→LUMO(σ*) transitions. The results of isodesmic bond separation reactions for the singlet states indicate some degree of stabilization due to delocalization in both of the title compounds. With our best values between 29 and 32 kcal/mol this stabilization appears to be only slightly less than the previously reported value for borabenzene (∼38 kcal/mol).

2018 ◽  
Vol 71 (3) ◽  
pp. 102
Author(s):  
Emma Persoon ◽  
Yuekui Wang ◽  
Gerhard Raabe

Quantum-chemical ab initio, time-independent, as well as time-dependent density functional theory (TD-DFT) calculations were performed on the so far elusive heterocycles inda- and thallabenzene (C5H5In and C5H5Tl), employing several different methods (MP2, CISD, CCSD, CCSD(T), BD, BD(T), QCISD, QCISD(T), CASSCF, DFT/B3LYP), effective core potentials, and different basis sets. While calculations on the MP2 level predict the ground states of the title compounds to be singlets with the first triplet states between 13 and 15 kcal mol−1 higher in energy, single point calculations with the QCISD(T), CCSD(T), and BD(T) methods at CCSD-optimized structures result in energy differences between the singlet and the triplet states in the range between 0.3 and 2.1 kcal mol−1 in favour of the triplet states. According to a CASSCF(8,8) calculation the triplets are also more stable by about 2.5–2.9 kcal mol−1. Calculations were also performed for the C5v-symmetric η5 structural isomers (cyclopentadienylindium, CpIn, and cyclopentadienylthallium, CpTl, Cp = C5H5) of the title compounds. At the highest level of theory employed in this study, C5H5In is between 79 and 88 kcal mol−1 higher in energy than CpIn, while this energy difference is even larger for thallabenzene where C5H5Tl is energetically between 94 and 102 kcal mol−1 above CpTl. In addition we report on the UV/vis spectra calculated with a TD-DFT method as well as on the spectra of the normal modes of C5H5In and C5H5Tl. Both types of spectra might facilitate identification of the title compounds eventually formed in photolysis or pyrolysis experiments.


2018 ◽  
Vol 20 (17) ◽  
pp. 11856-11866 ◽  
Author(s):  
Tao Yang ◽  
Diego M. Andrada ◽  
Gernot Frenking

Quantum chemical calculations using ab initio methods at the CCSD(T)/def2-TZVPP level and density functional theory using BP86 and M06-2X functionals in conjunction with def2-TZVPP basis sets have been carried out on the title molecules.


1999 ◽  
Vol 597 ◽  
Author(s):  
Steven Trohalaki ◽  
Robert J. Zellmer ◽  
Ruth Pachter

AbstractSpangler and He [1,2] have shown that dithienyl polyenes form extremely stable bipolaronic dications when oxidatively doped in solution. Previous theoretical studies applied empirical methods to predict bipolaronic enhancement of hyperpolarizabilities for simple polyenes [3,4]. Here, we employ density functional theory to optimize the gas-phase molecular conformations of neutral, cationic, and dicationic forms of a series of dithienyl polyenes, where the number of ethene units, N, is varied from 1–5. Ab initio Hartree-Fock, generalized valence bond, configuration interaction, and Møller-Plesset calculations demonstrate that the dications are farily well described with a closed shell and therefore have little biradicaloid character. Second hyperpolarizabilities, γ, are subsequently calculated using ab initio Hartree-Fock theory and a finite field methodology. As expected, γ increases with the number of ethene units for a given molecular charge. The cations also show the largest increase in γ with N. For a given value of N, the cations display the largest γ values. However, if we treat the dication as a triplet, which might be present in solution, then it displays the largest γ.


2013 ◽  
Vol 3 ◽  
pp. 69-73
Author(s):  
Kapil Adhikari ◽  
Asok K. Ray

Ab initio calculations of the electronic structures of silicon carbide (SiC) nanotubes represented by clusters are presented. The nanotube clusters of chiralities (3,3) and (5,5) are studied using the hybrid density functional B3LYP (Becke’s 3-parameter and the Lee-Yang-Parr exchange-correlation) and LANL2DZ (Los Alamos National Laboratory double ?) and 3-21G* basis sets. Evolution of electronic properties of silicon carbide (SiC) nanotubes (3, 3) and (5,5) with their length is discussed. The results suggest that the electronic properties of nanotubes change for short tubes of unit cells with lengths varying from 1 to 5. However, the properties do not seem to change significantly after this. Therefore, an infinite silicon carbide (SiC) nanotube can be approximated by a nanotube cluster of 5 unit cells.The Himalayan PhysicsVol. 3, No. 3, July 2012Page : 69-73


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
P. O. Jomo ◽  
C. O. Otieno ◽  
P. W. O. Nyawere

We report the results of pressure-induced semiconductor-metal phase transition of the semiconducting chalcogenide compound KPSe6 under high pressure using the ab initio methods. The ground-state energy calculations were performed within density functional theory and the generalized gradient approximation using the pseudopotential method with plane-wave basis sets. The projector augmented-wave (PAW) pseudopotentials were used in our calculation. The optimized lattice parameters were found from total energy calculations as 13 Bohr, 1.6 Bohr, and 1.8 Bohr for cell dimensions one, two, and three, respectively, which are in good agreement with experimental calculations. At zero pressure, the material portrayed a semiconducting property with a direct bandgap of ≈1.7 eV. As we subjected the material to pressure, the band gap was observed to reduce until it disappeared. The phase transition from the semiconductor to metal was found to occur at ∼45 GPa, implying that the material underwent metallization as pressure was increased further.


2009 ◽  
Vol 64 (4) ◽  
pp. 388-394 ◽  
Author(s):  
Raphael J. F. Berger

The existence of the C2v symmetric closed-shell di[gold(I)]hydronium cation [Au2H]+ (1), is predicted. It is shown that 1 is the smallest possible molecular species containing aurophilic contacts. Equilibrium structural parameters, vibrational frequencies and formation energies of 1 from Au+ and AuH, have been calculated, employing a series of highly correlated but available standard relativistic ab initio methods up to CCSD(T) level of theory and all-electron basis sets of quadruple-ζ quality with double polarizations. Relativistic effects have been taken into account by employing pseudorelativistic electron core potentials (ECP) or a scalar relativistic treatment using a Douglas-Kroll-Heß Hamiltonian of 2nd, 3rd and 4th order (DKH2, DKH3, DKH4).


2001 ◽  
Vol 73 (9) ◽  
pp. 1521-1553 ◽  
Author(s):  
Rudolf Janoschek

Since density functional theory (DFT) achieved a remarkable break-through in computational chemistry, the important general question "How reliable are quantum chemical calculations for spectroscopic properties?" should be answered anew. In this project, the most successful density functionals, namely the Becke B3LYP functionals, and the correlation-consistent polarized valence quadruple zeta basis sets (cc-pvqz) are applied to small molecules. In particular, the complete set of experimentally known diatomic molecules formed by the atoms H to Ar (these are 214 species) is uniformly calculated, and calculated spectroscopic properties are compared with experimental ones. Computationally demanding molecules, such as open-shell systems, anions, or noble gas compounds, are included in this study. Investigated spectroscopic properties are spectroscopic ground state, equilibrium internuclear distance, harmonic vibrational wavenumber, anharmonicity, vibrational absolute absorption intensity, electric dipole moment, ionization potential, and dissociation energy. The same computational method has also been applied to the ground-state geometries of 56 polyatomic molecules up to the size of benzene. Special sections are dedicated to nuclear magnetic resonance (NMR) chemical shifts and isotropic hyperfine coupling constants. Each set of systems for a chosen property is statistically analyzed, and the above important question "How reliable...?" is mathematically answered by the mean absolute deviation between calculated and experimental data, as well as by the worst agreement. In addition to presentation of numerous quantum chemically calculated spectroscopic properties, a corresponding updated list of references for experimentally determined properties is presented.


2021 ◽  
Author(s):  
Kazuumi Fujioka ◽  
Yuheng Luo ◽  
Rui Sun

Ab initio molecular dymamics (AIMD) simulation studies are a direct way to visualize chemical reactions and help elucidate non-statistical dynamics that does not follow the intrinsic reaction coordinate. However, due to the enormous amount of the ab initio energy gradient calculations needed for AIMD, it has been largely restrained to limited sampling and low level of theory (i.e., density functional theory with small basis sets). To overcome this issue, a number of machine learning (ML) methods have been employed to predict the energy gradient of the system of interest. In this manuscript, we outline the theoretical foundations of a novel ML method which trains from a varying set of atomic positions and their energy gradients, called interpolating moving ridge regression (IMRR), and directly predicts the energy gradient of a new set of atomic positions. Several key theoretical findings are presented regarding the inputs used to train IMRR and the predicted energy gradient. A hyperparameter used to guide IMRR is rigorously examined as well. The method is then applied to three bimolecular reactions studied with AIMD, including HBr+ + CO2, H2S + CH, and C4H2 + CH, to demonstrate IMRR’s performance on different chemical systems of different sizes. This manuscript also compares the computational cost of the energy gradient calculation with IMRR vs. ab initio, and the results highlight IMRR as a viable option to greatly increase the efficiency of AIMD.


2018 ◽  
Vol 55 (6A) ◽  
pp. 72
Author(s):  
Ngo Tuan Cuong

Two quantum chemical methods which are the time-dependent density functional theory (TD-DFT) and the complete active space CASPT2/CASSCF have been used in modeling absorption spectra of silver clusters Agn (n = 2, 3, 4, 6, 8). There is an overall good agreement between TD-DFT and CASPT2 results for transition energies. The absorption spectra of the Agn clusters examined can reasonably be simulated using the excitation energies obtained by either TD-DFT or CASPT2 method.  The main result emerged from this calculation is that the TD-DFT method is suitable for treatment of excited states of Ag clusters. The choice of specific functionals and basis sets to be used in some cases induces important effects on the calculated spectra. It is also noteworthy to mention that for some clusters, the neutral Ag6 for instance, the effect of noble gas environment is significant, while for some others such as the neutral Ag8, it is not. Therefore, carrying out TD-DFT calculations to reproduce and to assign a given structure to an experimental absorption spectrum of a silver cluster, it is not only to select suitable functionals but also to take enough effects of environments into account. 


Sign in / Sign up

Export Citation Format

Share Document