Robust Control for Fuzzy Nonlinear Uncertain Systems with Discrete and Distributed Time Delays

2014 ◽  
Vol 69 (10-11) ◽  
pp. 569-580 ◽  
Author(s):  
Rathinasamy Sakthivel ◽  
Ponnusamy Vadivel ◽  
Kalidass Mathiyalagan ◽  
Ju H. Park

AbstractThis paper addresses the problem of stability and stabilization issue for a class of fuzzy nonlinear uncertain systems with discrete and distributed time delays. By utilizing a new Lyapunov-Krasovskii functional together with free weighting matrix approach, a new set of delay-dependent sufficient conditions are derived which makes the closed loop system robustly asymptotically stable. In particular, the parameter uncertainties are assumed to be norm bounded. Further, a state feedback controller is proposed to guarantee the robust stabilization for uncertain systems and subsequently the controller is constructed in terms of the solution to a set of linear matrix inequalities (LMI). The derived conditions are expressed in the form of linear matrix inequalities which can be efficiently solved via standard LMI toolbox. Further, two numerical examples are provided to demonstrate the effectiveness and less conservatism of the obtained results.

Mathematics ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 1169
Author(s):  
Zhezhe Xin ◽  
Chunjie Xiao ◽  
Ting Hou ◽  
Xiao Shen

Robust stabilization and H ∞ controller design for uncertain systems with impulsive and stochastic effects have been deeply discussed. Some sufficient conditions for the considered system to be robustly stable are derived in terms of linear matrix inequalities (LMIs). In addition, an example with simulations is given to better demonstrate the usefulness of the proposed H ∞ controller design method.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Guilei Chen ◽  
Zhenwei Zhang ◽  
Chao Li ◽  
Dianju Qiao ◽  
Bo Sun

This paper addresses the robust stabilization problem for a class of stochastic Markovian jump systems with distributed delays. The systems under consideration involve Brownian motion, Markov chains, distributed delays, and parameter uncertainties. By an appropriate Lyapunov–Krasovskii functional, the novel delay-dependent stabilization criterion for the stochastic Markovian jump systems is derived in terms of linear matrix inequalities. When given linear matrix inequalities are feasible, an explicit expression of the desired state feedback controller is given. The designed controller, based on the obtained criterion, ensures asymptotically stable in the mean square sense of the resulting closed-loop system. The convenience of the design is greatly enhanced due to the existence of an adjustable parameter in the controller. Finally, a numerical example is exploited to demonstrate the effectiveness of the developed theory.


2011 ◽  
Vol 58-60 ◽  
pp. 685-690
Author(s):  
Cheng Wang ◽  
Yun Xu

This paper considers the issue of robust H∞ control for a class of nonlinear uncertain systems with delayed states and control, and the feedback controller is designed. By constructing proper Lyapunov-krasovskii function, the resulting closed-loop system is stochastically stable for all admissible uncertainties, time-delays and nonlinearities, and satisfies a prescribed H∞ performance. Sufficient conditions for the system to be robustly stochastically asymptotically stable are derived, by using linear matrix inequalities and Lyapunov-krasovskii stability theory. The feedback controller is obtained by solving the linear matrix inequalities. Numerical example is provided to show the validity of the proposed approaches.


2018 ◽  
Vol 40 (14) ◽  
pp. 3985-3993 ◽  
Author(s):  
Yanmei Hu ◽  
Guangren Duan ◽  
Feng Tan

This paper deals with the stabilization of state-constrained linear parameter-varying systems subject to parameter uncertainties and input saturation. Based on a class of parameter-dependent Lyapunov functions, and the set invariance, sufficient conditions for the stabilization problem of the linear parameter-varying systems are established in terms of parameterized linear matrix inequalities. Further, these conditions are converted into linear matrix inequalities by using a parameter relaxation technique. Finally, detailed simulation results are presented to illustrate the effectiveness of the proposed methodology.


2013 ◽  
Vol 846-847 ◽  
pp. 233-237
Author(s):  
Jin Xing Lin

This paper considers the problem of robust admissibility analysis of uncertain discrete-time switched linear singular systems for arbitrary switching laws. The parameter uncertainties are assumed to be of linear fractional form. By using the switched Lyapunov function approach, some new sufficient conditions ensuring such systems to be admissible for arbitrary switching laws are presented in terms of linear matrix inequalities (LMIs). Example is provided to demonstrate the effectiveness of the obtained results


2017 ◽  
Vol 10 (02) ◽  
pp. 1750022 ◽  
Author(s):  
Qimin Zhang ◽  
Xinjing Zhang ◽  
Hongfu Yang

In this paper, a class of stochastic Lotka–Volterra system with feedback controls is considered. The purpose is to establish some criteria to ensure the system is globally dissipative in the mean square. By constructing suitable Lyapunov functions as well as combining with Jensen inequality and It[Formula: see text] formula, the sufficient conditions are established and they are expressed in terms of the feasibility to a couple linear matrix inequalities (LMIs). Finally, the main results are illustrated by examples.


2003 ◽  
Vol 2003 (4) ◽  
pp. 137-152 ◽  
Author(s):  
D. Mehdi ◽  
E. K. Boukas

This paper deals with the class of uncertain systems with multiple time delays. The stability and stabilizability of this class of systems are considered. Their robustness are also studied when the norm-bounded uncertainties are considered. Linear matrix inequality (LMIs) delay-dependent sufficient conditions for both stability and stabilizability and their robustness are established to check if a system of this class is stable and/or is stabilizable. Some numerical examples are provided to show the usefulness of the proposed results.


2003 ◽  
Vol 125 (2) ◽  
pp. 249-253 ◽  
Author(s):  
M. D. S. Aliyu

In this paper, the state-feedback mixed H2/H∞ control problem for state-delayed linear systems is considered. Sufficient conditions for the solvability of this problem are given in terms of the solution to a pair of algebraic Riccati equations similar to the nondelayed case. However, these Riccati equations are more difficult to solve than those arising in the pure H2,H∞ problems, and an alternative approach is to solve a pair of linear matrix inequalities (LMIs).


2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Qing Wang ◽  
Maopeng Ran ◽  
Chaoyang Dong ◽  
Maolin Ni

We present an improved antiwindup design for linear invariant continuous-time systems with actuator saturation nonlinearities. In the improved approach, two antiwindup compensators are simultaneously designed: one activated immediately at the occurrence of actuator saturation and the other activated in anticipatory of actuator saturation. Both the static and dynamic antiwindup compensators are considered. Sufficient conditions for global stability and minimizing the inducedL2gain are established, in terms of linear matrix inequalities (LMIs). We also show that the feasibility of the improved antiwindup is similar to the traditional antiwindup. Benefits of the proposed approach over the traditional antiwindup and a recent innovative antiwindup are illustrated with well-known examples.


Sign in / Sign up

Export Citation Format

Share Document