scholarly journals Particulate matter concentrations during winter seasons of 2016-2020 in Ulaanbaatar, Mongolia

Author(s):  
Ganzorig Byambajav ◽  
Bayarmaa Batbaatar ◽  
Ariundelger Ariunsaikhan ◽  
Sonomdagva Chonokhuu

In this study, we have focused on the outdoor concentration of fine particulate matter (PM2.5) during the coldest months (November-February) of 2016-2019 and January-February of 2020 and illustrated the daily, monthly and quarterly averages according to the single-point measurement data collected by the PM2.5 sensor at an air quality monitoring station located in a central area of Ulaanbaatar. The study also analyzes monthly high, low, average and median points of PM2.5 concentrations in the area that was selected. The PM2.5 sensor collects its data at an interval of every ten seconds, registers 8500 data in one day and presents the concentration of fine particulate matter in micrograms per cubic meter (μg/m3). On the basis of data collection and analysis, from November through February of 2019-2020, average PM2.5 concentration dropped noticeably by 44 per cent compared to the previous years. The Government of Mongolia took immediate action to combat air pollution of Ulaanbaatar city in May 2019 by banning the burning of raw coal in the ger districts, which account for 70 per cent of the city’s emissions, and introduced coal briquette as the only type of fuel that was allowed to be burned in metal stoves as a primary source of heating and cooking. Our study reveals that the latest government regulation had a considerable impact on air quality during winter 2019-2020 and helped in the sudden decline of the most dangerous pollutant PM2.5 concentration very close to national standards (50 µg/m3 24-hour mean) within 6 months since the enforcement of the new regulation.

Author(s):  
Youngrin Kwag ◽  
Min-ho Kim ◽  
Shinhee Ye ◽  
Jongmin Oh ◽  
Gyeyoon Yim ◽  
...  

Background: Preterm birth contributes to the morbidity and mortality of newborns and infants. Recent studies have shown that maternal exposure to particulate matter and extreme temperatures results in immune dysfunction, which can induce preterm birth. This study aimed to evaluate the association between fine particulate matter (PM2.5) exposure, temperature, and preterm birth in Seoul, Republic of Korea. Methods: We used 2010–2016 birth data from Seoul, obtained from the Korea National Statistical Office Microdata. PM2.5 concentration data from Seoul were generated through the Community Multiscale Air Quality (CMAQ) model. Seoul temperature data were collected from the Korea Meteorological Administration (KMA). The exposure period of PM2.5 and temperature were divided into the first (TR1), second (TR2), and third (TR3) trimesters of pregnancy. The mean PM2.5 concentration was used in units of ×10 µg/m3 and the mean temperature was divided into four categories based on quartiles. Logistic regression analyses were performed to evaluate the association between PM2.5 exposure and preterm birth, as well as the combined effects of PM2.5 exposure and temperature on preterm birth. Result: In a model that includes three trimesters of PM2.5 and temperature data as exposures, which assumes an interaction between PM2.5 and temperature in each trimester, the risk of preterm birth was positively associated with TR1 PM2.5 exposure among pregnant women exposed to relatively low mean temperatures (<3.4 °C) during TR1 (OR 1.134, 95% CI 1.061–1.213, p < 0.001). Conclusions: When we assumed the interaction between PM2.5 exposure and temperature exposure, PM2.5 exposure during TR1 increased the risk of preterm birth among pregnant women exposed to low temperatures during TR1. Pregnant women should be aware of the risk associated with combined exposure to particulate matter and low temperatures during TR1 to prevent preterm birth.


Atmosphere ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 302
Author(s):  
Rajesh Kumar ◽  
Piyush Bhardwaj ◽  
Gabriele Pfister ◽  
Carl Drews ◽  
Shawn Honomichl ◽  
...  

This paper describes a quasi-operational regional air quality forecasting system for the contiguous United States (CONUS) developed at the National Center for Atmospheric Research (NCAR) to support air quality decision-making, field campaign planning, early identification of model errors and biases, and support the atmospheric science community in their research. This system aims to complement the operational air quality forecasts produced by the National Oceanic and Atmospheric Administration (NOAA), not to replace them. A publicly available information dissemination system has been established that displays various air quality products, including a near-real-time evaluation of the model forecasts. Here, we report the performance of our air quality forecasting system in simulating meteorology and fine particulate matter (PM2.5) for the first year after our system started, i.e., 1 June 2019 to 31 May 2020. Our system shows excellent skill in capturing hourly to daily variations in temperature, surface pressure, relative humidity, water vapor mixing ratios, and wind direction but shows relatively larger errors in wind speed. The model also captures the seasonal cycle of surface PM2.5 very well in different regions and for different types of sites (urban, suburban, and rural) in the CONUS with a mean bias smaller than 1 µg m−3. The skill of the air quality forecasts remains fairly stable between the first and second days of the forecasts. Our air quality forecast products are publicly available at a NCAR webpage. We invite the community to use our forecasting products for their research, as input for urban scale (<4 km), air quality forecasts, or the co-development of customized products, just to name a few applications.


2017 ◽  
Author(s):  
Giovanni Di Virgilio ◽  
Melissa Anne Hart ◽  
Ningbo Jiang

Abstract. Internationally, severe wildfires are an escalating problem likely to worsen given projected changes to climate. Hazard reduction burns (HRB) are used to suppress wildfire occurrences, but they generate considerable emissions of atmospheric fine particulate matter, which depending upon prevailing atmospheric conditions, can degrade air quality. Our objectives are to improve understanding of the relationships between meteorological conditions and air quality during HRBs in Sydney, Australia. We identify the primary meteorological covariates linked to high PM2.5 pollution (particulates


2019 ◽  
Vol 25 (6) ◽  
pp. 898-907 ◽  
Author(s):  
M. Gokul Raj ◽  
S. Karthikeyan

Daily commuting increases level of contaminants inhaled by urban community and it is influenced by mode and time of commuting. In this study, the commuters’ exposure to ambient particulate matter (PM2.5) and nitrogen dioxide (NO2) was assessed during three modes of travel in six different road stretches of Chennai. The mean distance of road stretches was 25 km and the exposure to pollutants was assessed during peak hours and off-peak hours. The average travel duration was in the range of 39 to 91 min in motorbike, 83 to 140 min in car and 110 to 161 min in bus. Though there was variation on exposure to concentration in modes of transportation, the maximum exposure concentration of PM2.5 was observed as 709 μg/m<sup>3</sup> in bus and the minimum exposure concentration was 29 μg/m<sup>3</sup> in closed car. Similarly, the maximum exposure concentration of NO2 was observed to be 312 μg/m<sup>3</sup> in bus and the minimum exposure concentration was 21 μg/m<sup>3</sup> in car. The concentration of elements in PM2.5 was in the order of Si > Na > Ca > Al ≥ K > S ≥ Cd, with Si and Cd concentration as 60% and < 1% of the PM2.5 concentration.


2019 ◽  
Vol 8 (3) ◽  
pp. 7922-7927

In Taiwan country Annan, Chiayi, Giran, and Puzi cities are facing a serious fine particulate matter (PM2.5) issue. To date the impressive advance has been made toward understanding the PM2.5 issue, counting special temporal characterization, driving variables and well-being impacted. However, notable research as has been done on the interaction of the content between the selected cities of Taiwan country for particulate matter (PM2.5) concentration. In this paper, we purposed a visualization technique based on this principle of the visualization, cross-correlation method and also the time-series concentration with particulate matter (PM2.5) for different cities in Taiwan. The visualization also shows that the correlation between the different meteorological factors as well as the different air pollution pollutants for particular cities in Taiwan. This visualization approach helps to determine the concentration of the air pollution levels in different cities and also determine the Pearson correlation, r values of selected cities are Annan, Puzi, Giran, and Wugu.


2016 ◽  
Author(s):  
Yu Fu ◽  
Amos P. K. Tai ◽  
Hong Liao

Abstract. To examine the effects of changes in climate, land cover and land use (LCLU), and anthropogenic emissions on fine particulate matter (PM2.5) between the 5-year periods 1981–1985 and 2007–2011 in East Asia, we perform a series of simulations using a global chemical transport model (GEOS-Chem) driven by assimilated meteorological data and a suite of land cover and land use data. Our results indicate that climate change alone could lead to a decrease in wintertime PM2.5 concentration by 4.0–12.0 μg m−3 in northern China, but an increase in summertime PM2.5 by 6.0–8.0 μg m−3 in those regions. These changes are attributable to the changing chemistry and transport of all PM2.5 components driven by long-term trends in temperature, wind speed and mixing depth. The concentration of secondary organic aerosol (SOA) is simulated to increase by 0.2–0.8 μg m−3 in both summer and winter in most regions of East Asia due to climate change alone, mostly reflecting higher biogenic volatile organic compound (VOC) emissions under warming. The impacts of LCLU change alone on PM2.5 (−2.1 to +1.3 μg m−3) are smaller than that of climate change, but among the various components the sensitivity of SOA and thus organic carbon to LCLU change (−0.4 to +1.2 μg m−3) is quite significant especially in summer, which is driven mostly by changes in biogenic VOC emissions following cropland expansion and changing vegetation density. The combined impacts show that while the effect of climate change on PM2.5 air quality is more pronounced, LCLU change could offset part of the climate effect in some regions but exacerbate it in others. As a result of both climate and LCLU changes combined, PM2.5 levels are estimated to change by −12.0 to +12.0 μg m−3 across East Asia between the two periods. Changes in anthropogenic emissions remain the largest contributor to deteriorating PM2.5 air quality in East Asia during the study period, but climate and LCLU changes could lead to a substantial modification of PM2.5 levels.


Sign in / Sign up

Export Citation Format

Share Document