scholarly journals Changes in anatomical structure of apple fruitlet pedicels preceding June drop

2013 ◽  
Vol 35 (1) ◽  
pp. 11-23 ◽  
Author(s):  
Hanna Habdas ◽  
Leszek S. Jankiewicz ◽  
Bożena Borkowska

The anatomical structure of pedicels of apple fruitlets was investigated. The fruitlets of cv. 'Mcintosh' and 'Bancroft' were collected on June 8th, 16th an 24th. The middle date coincided with the beginning of June drop. The pedicel structure of larger fruitlets which tended to be retained on the tree was compared with that of smaller fruitlets which tended to be shed of. In the pedicels of larger fruitlets, development of the xylem, especially secondary one, was more intensive. This difference increased in time. Lignification of cortex sclereids, phloem fibers, xylem parenchyma cells and pith cells was also more advanced. The differences in the amount of phloem tissue between both kinds of fruitlets were not large but usually significant. The mentioned differences especially in pedicel xylem development are considered to be partly responsible for the fact that smaller fruitlets loose gradually their ability to compete for nutrients. This finally leads to their starvation and shedding.

Author(s):  
Patrick Echlin ◽  
Thomas Hayes ◽  
Clifford Lai ◽  
Greg Hook

Studies (1—4) have shown that it is possible to distinguish different stages of phloem tissue differentiation in the developing roots of Lemna minor by examination in the transmission, scanning, and optical microscopes. A disorganized meristem, immediately behind the root-cap, gives rise to the vascular tissue, which consists of single central xylem element surrounded by a ring of phloem parenchyma cells. This ring of cells is first seen at the 4-5 cell stage, but increases to as many as 11 cells by repeated radial anticlinal divisions. At some point, usually at or shortly after the 8 cell stage, two phloem parenchyma cells located opposite each other on the ring of cells, undergo an unsynchronized, periclinal division to give rise to the sieve element and companion cell. Because of the limited number of cells involved, this developmental sequence offers a relatively simple system in which some of the factors underlying cell division and differentiation may be investigated, including the distribution of diffusible low atomic weight elements within individual cells of the phloem tissue.


1974 ◽  
Vol 22 (2) ◽  
pp. 211 ◽  
Author(s):  
G Scurfield ◽  
CA Anderson ◽  
ER Segnit

Scanning electron microscopy has been used to examine silica isolated by chemical means from the wood of 32 species of woody perennial. The silica consists of aggregate grains lying free in the lumina or in ray and xylem parenchyma cells in 24 of the species. It occurs as dense silica in the other species, filling the lumina or lining the internal surfaces of vessels (and fibres) in all cases except Gynotroches axillaris where it is deposited in ray parenchyma cells. Infrared spectra and X-ray diffraction diagrams, obtained for specimens of both sorts of silica, are indistinguishable from those for amorphous silica. Aggregate grain and dense silicas are also alike in that their differential thermal analysis curves show a rather broad endothermic peak between 175° and 205°C. The results are discussed in relation to possible modes of deposition of the two sorts of silica and the tendency for silica in ray parenchyma cells to be associated with polyphenols.


Planta ◽  
2011 ◽  
Vol 235 (4) ◽  
pp. 747-759 ◽  
Author(s):  
Donghui Wang ◽  
Jun Kasuga ◽  
Chikako Kuwabara ◽  
Keita Endoh ◽  
Yukiharu Fukushi ◽  
...  

2008 ◽  
Vol 28 (2) ◽  
pp. 215-224 ◽  
Author(s):  
M. Decourteix ◽  
G. Alves ◽  
M. Bonhomme ◽  
M. Peuch ◽  
K. B. Baaziz ◽  
...  

IAWA Journal ◽  
1993 ◽  
Vol 14 (2) ◽  
pp. 163-171 ◽  
Author(s):  
J. R. Barnett ◽  
P. Cooper ◽  
Lynda J. Bonner

The protective layer between the cell wall and plasmalemma of xylem parenchyma cells has variously been suggested to be involved in protection of the protoplast from attack by autolytic enzymes from neighbouring, dying cells, tylose formation, deep supercooling of xylem, and strengthening of the pit. None of these ideas has universal application to all species in which parenchyma cells possess a protective layer. It is proposed instead, that the protective layer is primarily laid down in order to preserve apoplastic continuity around the protoplast of a lignified cell, bringing the entire plasmalemma surface, and not just that part of it in contact with the porous pit membrane, into contact with the apoplast. If this is so, then other functions may be coincidental, or have arisen secondarily.


1966 ◽  
Vol 44 (11) ◽  
pp. 1539-1554 ◽  
Author(s):  
Ellis B. Cowling ◽  
William Merrill

Based on present knowledge of the origin, amounts, chemical form, and distribution of nitrogen (N) in wood, hypotheses are proposed to explain radial gradients in N content that exist across the xylem cylinder of tree stems: (1) N in the cytoplasm of developing wood cells is diluted by apposition of cell wall substances; (2) after maturation of wood fiber cells, N in their cytoplasm is removed by elution into the transpiration stream; (3) death of xylem parenchyma cells during aging of sapwood and formation of heartwood is accompanied by removal of much of the N in their cytoplasm. Hypotheses 2 and 3 above suggest strongly that trees possess an internal recycling mechanism for conservation and reuse of the N in the cytoplasm of xylary cells.Although the supply of N in wood is meager, wood-destroying fungi readily metabolize the carbon-rich constituents of wood and produce large fruiting structures that release vast numbers of spores in nature. To account for these capacities, we postulate that these fungi employ one or more of the following three mechanisms: (1) preferential allocation of N obtainable from wood to substances and pathways highly efficient in the use of wood constituents; (2) reuse of N obtainable from wood by a dynamic and continuous process of autolysis and reuse without significant loss of N; (3) utilization of N sources outside the wood itself, for example, by fixation of atmospheric N.


Sign in / Sign up

Export Citation Format

Share Document