scholarly journals The effect of fungicides used in the protection of forest tree seedlings on the growth of ectomycorrhizal fungi

2014 ◽  
Vol 32 (2) ◽  
pp. 315-322 ◽  
Author(s):  
Marta Aleksandrowicz-Trzcińska ◽  
Andrzej Grzywacz

Fungitoxical activity of ten fungictdes most commonly used in the phytopathological protection of forest nurseries was studied, using the <i>in vitro</i> screening method. The fungitoxical activity was studied against five species of ectomycorrhizal fungi (seven strains). The resulting growth inhibition of fungi species and strains tested was prcscnted in terms of fungitoxicity classes of the preparations used. The highest total fungitoxicity against the mycelia of fungi taxa tested was found for Euparen, Bravo, Dithane M-45 and Ridomil. The weakest fungitoxical effect was observed for Topsin M and Bayleton. The least susceptible for the action of the fungicides studied were mycelia of <i>Suillus luteus</i>, while the most susceptible were those of <i>Hebeloma crustuliniforme</i> and <i>Laccaria laccata</i>. The study results arę useful for the selection of fungi strains proper for the artificial mycorrhization of seedlings.

2005 ◽  
Vol 73 (2) ◽  
pp. 972-980 ◽  
Author(s):  
C. G. Osorio ◽  
J. A. Crawford ◽  
J. Michalski ◽  
H. Martinez-Wilson ◽  
J. B. Kaper ◽  
...  

ABSTRACT We have constructed an improved recombination-based in vivo expression technology (RIVET) and used it as a screening method to identify Vibrio cholerae genes that are transcriptionally induced during infection of infant mice. The improvements include the introduction of modified substrate cassettes for resolvase that can be positively and negatively selected for, allowing selection of resolved strains from intestinal homogenates, and three different tnpR alleles that cover a range of translation initiation efficiencies, allowing identification of infection-induced genes that have low-to-moderate basal levels of transcription during growth in vitro. A transcriptional fusion library of 8,734 isolates of a V. cholerae El Tor strain that remain unresolved when the vibrios are grown in vitro was passed through infant mice, and 40 infection-induced genes were identified. Nine of these genes were inactivated by in-frame deletions, and their roles in growth in vitro and fitness during infection were measured by competition assays. Four mutant strains were attenuated >10-fold in vivo compared with the parental strain, demonstrating that infection-induced genes are enriched in genes essential for virulence.


2018 ◽  
Vol 3 (1) ◽  
Author(s):  
Luis E Contreras-Llano ◽  
Cheemeng Tan

Abstract The incorporation of cell-free transcription and translation systems into high-throughput screening applications enables the in situ and on-demand expression of peptides and proteins. Coupled with modern microfluidic technology, the cell-free methods allow the screening, directed evolution and selection of desired biomolecules in minimal volumes within a short timescale. Cell-free high-throughput screening applications are classified broadly into in vitro display and on-chip technologies. In this review, we outline the development of cell-free high-throughput screening methods. We further discuss operating principles and representative applications of each screening method. The cell-free high-throughput screening methods may be advanced by the future development of new cell-free systems, miniaturization approaches, and automation technologies.


HortScience ◽  
2014 ◽  
Vol 49 (2) ◽  
pp. 141-144 ◽  
Author(s):  
Hirotoshi Tsuda ◽  
Hisato Kunitake ◽  
Yo Aoki ◽  
Akiko Oyama ◽  
Takuya Tetsumura ◽  
...  

We tested efficient in vitro methods for screening the genotypes with higher pH tolerance using multiple shoots of intersectional hybrids between Vaccinium corymbosum ‘Spartan’ and V. bracteatum. The response of the four hybrid clones tested to different pH levels was clone-dependent in vitro. An apparent difference was found in the rooting rate among the hybrid clones even at higher pH levels; the rooting rates of JM4 (91%) at pH 8.0 indicated a significantly high value compared with other clones (JM1: 24%, JM2: 9%, JM3: 8%, ‘Spartan’: 0%). Furthermore, JM4 showed constantly high rooting rates (91% to 100%) at all pH levels with no significant differences. Similar differences in the root characters of the hybrids were also confirmed by checking the viability of roots using fluorescein diacetate (FDA)/propidium iodide (PI) staining after dipping the roots of in vitro-produced shoots in liquid medium at different pH levels for 6 hours. These results suggest that an in vitro screening method using the rooting rate of multiple shoots and the viability test of roots by FDA/PI staining as a marker could become a very useful tool for the selection of germplasm with tolerance to higher pH within a short time using small planting spaces. In addition, JM4, which showed a high rooting rate at pH 8.0, could be useful in breeding new cultivars with higher pH tolerance.


2002 ◽  
Vol 10 (1) ◽  
pp. 43-51 ◽  
Author(s):  
G. Kernaghan ◽  
B. Hambling ◽  
M. Fung ◽  
D. Khasa

2021 ◽  
Vol 49 (2) ◽  
pp. 12363
Author(s):  
Wen-Ya MA ◽  
Qiang-Sheng WU ◽  
Yong-Jie XU ◽  
Kamil KUČA

Walnuts are an economically important forest tree used for timber and nut production, and the nut of fruits is rich in various nutrients, becoming one of the four important nuts in the world. Walnuts have deep roots, which can be colonized by either ectomycorrhizal fungi or arbuscular mycorrhizal fungi in the soil. These mycorrhizal fungi form beneficial symbioses in roots of walnut. A large number of ectomycorrhizal fungi have been identified, whilst Boletus edulis, Calvatia uiacina, and Cantharelles cibarius isolated from walnut orchards stimulated plant growth and gave the capacity of stress tolerance in walnut. Moreover, Carya illinoensis is a very good host plant for commercial production of truffles, especially Tuber indicum. In addition, ectomycorrhizal fungi accelerate plant growth and enhance potential stress tolerance of walnuts. Inoculation with arbuscular mycorrhizal fungi also showed the improvement of plant growth and nutrient acquisition of walnut, the enhancement of drought tolerance in walnut, nutrient redistribution under walnut interplanting patterns, and the delivery of juglone by mycorrhizal hyphae. A culturable in vitro arbuscular mycorrhizal like fungus Piriformospora indica also enhanced salt tolerance of walnut plants. In this mini-review, the physiological roles of mycorrhizal fungi, including arbuscular mycorrhizal fungi, ectomycorrhizal fungi and arbuscular mycorrhizal like fungus (P. indica) on walnut plants are summarized, and future outlooks in the field are proposed.


Polymers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 3470
Author(s):  
Marfa N. Egorikhina ◽  
Irina I. Bronnikova ◽  
Yulia P. Rubtsova ◽  
Irina N. Charykova ◽  
Marina L. Bugrova ◽  
...  

The success of the regenerative process resulting from the implantation of a scaffold or a tissue-engineered structure into damaged tissues depends on a series of factors, including, crucially, the biodegradability of the implanted materials. The selection of a scaffold with appropriate biodegradation characteristics allows for synchronization of the degradation of the construct with the processes involved in new tissue formation. Thus, it is extremely important to characterize the biodegradation properties of potential scaffold materials at the stage of in vitro studies. We have analyzed the biodegradation of hybrid fibrin–collagen scaffolds in both PBS solution and in trypsin solution and this has enabled us to describe the processes of both their passive and enzymatic degradation. It was found that the specific origin of the collagen used to form part of the hybrid scaffolds could have a significant effect on the nature of the biodegradation process. It was also established, during comparative studies of acellular scaffolds and scaffolds containing stem cells, that the cells, too, make a significant contribution to changes in the biodegradation and structural properties of such scaffolds. The study results also provided evidence indicating the dependency between the pre-cultivation period for the cellular scaffolds and the speed and extent of their subsequent biodegradation. Our discussion of results includes an attempt to explain the mechanisms of the changes found. We hope that the said results will make a significant contribution to the understanding of the processes affecting the differences in the biodegradation properties of hybrid, biopolymer, and hydrogel scaffolds.


2011 ◽  
Vol 17 (3) ◽  
pp. 288-294 ◽  
Author(s):  
Yong-Hwan Lee ◽  
Myeong-Ji Lee ◽  
Hyo-Won Choi ◽  
Sung-Taek Kim ◽  
Jin-Woo Park ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document