scholarly journals Arbuscular fungi and mycorrhizae of agricultural soils of the Western Pomerania. Part I. Occurrence of arbuscular fungi and mycorrhizae

2014 ◽  
Vol 39 (1) ◽  
pp. 65-91 ◽  
Author(s):  
Anna Iwaniuk ◽  
Janusz Błaszkowski

This paper presents results of three-year investigations on the occurrence of arbuscular mycorrhizal fungi and arbuscular mycorrhizae of the phylum Glomeromycota in agricultural soils of the Western Pomerania, north-western Poland. The occurrence of these fungi was determined basing on soil-root mixtures collected from both the field and trap cultures.

2014 ◽  
Vol 39 (2) ◽  
pp. 123-138
Author(s):  
Anna Iwaniuk ◽  
Janusz Błaszkowski

This part of the two-part paper of arbuscular mycorrhizal fungi (AMF) of the phylum Glomeromycota of agricultural soils of the Western Pomerania, north-western Poland, presents the distribution of 26 species of these fungi in both the sites considered in this study and cultivated soils of other regions of Poland and the world investigated previously. The fungi were isolated from both field-collected rhizosphere soil and root mixtures and trap cultures established from each field sample and seeded with three species of plant hosts. Among the fungal species characterized, 18 are of the genus <i>Glomus</i>, one each of the genera <i>Archaeospora, Entrophospora</i> and <i>Paraglomus</i> and three and two of the genera <i>Acaulospora</i> and <i>Scutellospora</i>, respectively.


Author(s):  
Tom Thirkell ◽  
◽  
Grace Hoysted ◽  
Ashleigh Elliott ◽  
Katie Field ◽  
...  

Arbuscular mycorrhizal fungi (AMF) form endosymbiosis with over 70 % of land plants, including most crops including cereals. These symbioses facilitate resource exchange between partners and can significantly increase plant nutrient uptake and growth, among other benefits. AMF ubiquity in agricultural soils, in addition to the many roles they are known to play in soil health, demands we consider them when discussing crop function. We discuss how AMF are capable of increasing crop acquisition of macro- and micronutrients. We examine further impacts that AMF have on root system architecture, and how this relates to nutrient acquisition. We highlight reasons why potential benefits of the symbiosis are often not realised and how this influences current perspectives on the utility of AMF. We also discuss aspects of modern agronomy practice which are deleterious to mycorrhizal functioning. Strategies are suggested by which mycorrhizas might be exploited in future highlighting future research priorities.


2012 ◽  
Vol 518-523 ◽  
pp. 5381-5384
Author(s):  
Song Mei Shi ◽  
Bo Tu ◽  
Dai Jun Liu ◽  
Xiao Hong Yang

Physic nut (Jatropha curcas Linn., Euphorbiaceae) is one of the hottest biomass energy plant studied by scientists. This paper first reviewed the symbiosis relationship between physic nut and arbuscular mycorrhizal fungi. The researches have showed that diversity of arbuscular mycorrhizal fungi (AMF) exists around the rhizosphere of physic nut. The AMF hyphae colonize root tips of physic nut to develop arbuscular mycorrhizae. The construction of mycorrhizal symbiosis relationship improves the nutritional absorption, promotes the growth and development of seedlings, and enhance the stress tolerance capacity of physic nut. This paper also displays a prospect for mycorrhizal physic nut research in the future, such as mycorrhizal system, the molecular mechanism for stress resistance and gene engineering. As an important resource of biomass energy, mycorrhizal physic nut has a huge exploitation potential and practical value.


1977 ◽  
Vol 55 (1) ◽  
pp. 48-51 ◽  
Author(s):  
D. E. Carling ◽  
J. A. White ◽  
M. F. Brown

The ultrastructure of the interfacial zone which separates the intracellular structures of vesicular-arbuscular mycorrhizal fungi from host cytoplasm has been described in a variety of ways by recent investigators. Evidence is presented here which suggests that previous interpretations of the ultrastructure of the interfacial zone have been based on an artifact of fixation. Using an improved procedure, a dense, granular material was found in the interfacial zone. This material was preserved by simultaneous glutaraldehyde-osmium fixation but not by conventional prefixation and postfixation in glutaraldehyde and osmium, respectively.


Soil Research ◽  
2012 ◽  
Vol 50 (1) ◽  
pp. 76
Author(s):  
Bukola Emmanuel ◽  
Olajire Fagbola ◽  
Oluwole Osonubi

Soil fertility management practices can influence colonisation of crops by arbuscular mycorrhizal fungi (AMF) and their abundance. The effects of different rates of nitrogen-phosphorus-potassium (NPK) fertiliser on AMF occurrence and colonisation were studied in maize/Centrosema pascuorum and sole maize systems. The NPK treatments were at rates (kg/ha): 0-10-30, 45-10-30, and 0-0-0 (control). The AMF spore populations were enumerated by direct counting under a microscope. Nutrient uptake was calculated as the product of nutrient concentration and shoot dry weight, and maize yield was estimated per ha. In the maize/Centrosema system, spore count, AMF colonisation, and nutrient uptake (except N) decreased with NPK 45-10-30 compared with 0-10-30, although maize yields were comparable at the two fertiliser levels. In the sole maize system, fertiliser application did not influence AMF spore abundance, but colonisation, nutrient uptake, and crop yield increased significantly (P < 0.05) with NPK 45-10-30. Maize yield increased by 1200% under the maize/Centrosema system compared with sole maize at NPK 0-10-30. The lowest values for all parameters were obtained under the control treatments. Colonisation of AMF, nutrient uptake, and maize yield were positively correlated. The maize/Centrosema system can maximise AMF benefits to increase yield and also reduce fertiliser input into agricultural soils, while application of N fertiliser is important to increase yield in the sole maize system.


Sign in / Sign up

Export Citation Format

Share Document