New approaches to urban area change detection using multitemporal RADARSAT-2 polarimetric synthetic aperture radar (SAR) data

2012 ◽  
Vol 38 (3) ◽  
pp. 253-266 ◽  
Author(s):  
Xinwu Li ◽  
Lu Zhang ◽  
Huadong Guo ◽  
Zhongchang Sun ◽  
Lei Liang
2022 ◽  
Author(s):  
J P Dudley ◽  
S V Samsonov

The RADARSAT Constellation Mission (RCM) is Canada's latest system of C-band Synthetic Aperture Radar (SAR) Earth observation satellites. The system of three satellites, spaced equally in a common orbit, allows for a rapid four-day repeat interval. The RCM has been designed with a selection of stripmap, spotlight, and ScanSAR beam modes which offer varied combinations of spatial resolution and coverage. Using Differential Interferometric Synthetic Aperture Radar (DInSAR) techniques, the growing archive of SAR data gathered by RCM can be used for change detection and ground deformation monitoring for diverse applications in Canada and around the world. In partnership with the Canadian Space Agency (CSA), the Canada Centre for Mapping and Earth Observation (CCMEO) has developed an automated system for generating standard and advanced deformation products and change detection from SAR data acquired by RCM and RADARSAT-2 satellites using DInSAR processing methodology. Using this system, this paper investigates four key interferometric properties of the RCM system which were not available on the RADARSAT-1 or RADARSAT-2 missions: The impact of the high temporal resolution of the four-day repeat cycle of the RCM on temporal decorrelation trends is tested and fitted against simple temporal decay models. The effect of the normalization and the precision of the radiometric calibration on interferometric spatial coherence is investigated. The performance of the RCM ScanSAR mode for wide area interferometric analysis is tested. The performance of the novel RCM Compact-polarization (CP) mode for interferometric analysis is also investigated.


Water ◽  
2014 ◽  
Vol 6 (3) ◽  
pp. 694-722 ◽  
Author(s):  
Alisa Gallant ◽  
Shannon Kaya ◽  
Lori White ◽  
Brian Brisco ◽  
Mark Roth ◽  
...  

Sensors ◽  
2019 ◽  
Vol 19 (23) ◽  
pp. 5176
Author(s):  
Guannan Li ◽  
Ying Li ◽  
Bingxin Liu ◽  
Peng Wu ◽  
Chen Chen

Polarimetric synthetic aperture radar is an important tool in the effective detection of marine oil spills. In this study, two cases of Radarsat-2 Fine mode quad-polarimetric synthetic aperture radar datasets are exploited to detect a well-known oil seep area that collected over the Gulf of Mexico using the same research area, sensor, and time. A novel oil spill detection scheme based on a multi-polarimetric features model matching method using spectral pan-similarity measure (SPM) is proposed. A multi-polarimetric features curve is generated based on optimal polarimetric features selected using Jeffreys–Matusita distance considering its ability to discriminate between thick and thin oil slicks and seawater. The SPM is used to search for and match homogeneous unlabeled pixels and assign them to a class with the highest similarity to their spectral vector size, spectral curve shape, and spectral information content. The superiority of the SPM for oil spill detection compared to traditional spectral similarity measures is demonstrated for the first time based on accuracy assessments and computational complexity analysis by comparing with four traditional spectral similarity measures, random forest (RF), support vector machine (SVM), and decision tree (DT). Experiment results indicate that the proposed method has better oil spill detection capability, with a higher average accuracy and kappa coefficient (1.5–7.9% and 1–25% higher, respectively) than the four traditional spectral similarity measures under the same computational complexity operations. Furthermore, in most cases, the proposed method produces valuable and acceptable results that are better than the RF, SVM, and DT in terms of accuracy and computational complexity.


Sign in / Sign up

Export Citation Format

Share Document