CLIMATIC CHANGE IMPACT ON THE MEAN MONTHLY AND ANNUAL DISCHARGE OF SOME RIVER AND THEIRS TRIBUTARIES

Author(s):  
Rodica-Paula Mic
2012 ◽  
Vol 440 ◽  
pp. 33-41 ◽  
Author(s):  
Dimitris Tigkas ◽  
Harris Vangelis ◽  
George Tsakiris

Proceedings ◽  
2018 ◽  
Vol 7 (1) ◽  
pp. 18
Author(s):  
Mária Ďurigová ◽  
Dominika Ballová ◽  
Kamila Hlavčová

Detailed analyses of hydrological data are necessary in order to prove changes in their character. This article focuses on an analysis of the average monthly discharges of 14 stage-discharge gauging stations in Slovakia. The measured period is from 1931 to 2016. The approaches used are hydrological exploration methods, which were created by hydrologists to describe the behavior of hydrological time series. The methods are used to identify a change-point using an analysis of any residuals, the Pettitt test, and an analysis of the relationship between the mean annual discharge deviations from the long-term annual discharge and the deviations of the average monthly discharge from the long-term average monthly discharge. A considerable number of change-points were identified in the 1970s and 1980s. The results of the analyses show changes in the hydrological regimes, but to confirm the accuracy of the outcomes, it is also necessary to examine other hydrological and meteorological elements such as, e.g., precipitation and the air temperature.


2012 ◽  
Vol 50 (No. 6) ◽  
pp. 256-262 ◽  
Author(s):  
P. Čermák ◽  
L. Jankovský ◽  
P. Cudlín

The paper proposes a method of assessing the potential risks of the future development of stands in relation to a climatic change. To assess risks of the future development of a stand simple point scales have been worked up based on primary properties of a site and a stand according to data of the forest management plan (FMP). In assessing the health condition, the risk of damage to stands by Armillaria sp. in the felling age was evaluated on the basis of a present attack by Armillaria sp. and also defoliation of the crown primary structure assessed during a simple field examination. The evaluation was carried out in the region of the Křtiny Training Forest Enterprise (TFE) Masarykův les, ranger district Proklest, in 2002. The study was conducted in <br />118 Norway spruce stands aged more than 20 years. The majority of evaluated stands ranked among the category of high and medium risk from the viewpoint of site and stand risks and among the category of high Armillaria sp. attack. &nbsp; &nbsp;


2013 ◽  
Vol 13 (8) ◽  
pp. 2041-2052 ◽  
Author(s):  
T. Roje-Bonacci ◽  
O. Bonacci

Abstract. The Ombla Spring represents a typical abundant coastal karst spring located in the vicinity of the town of Dubrovnik (Croatia). Its outlet is at an altitude of 2.5 m above sea level (m a.s.l.) and the water from it immediately flows into the Adriatic Sea. The minimum and maximum measured discharges are 3.96 m3 s−1 and 117 m3 s−1, respectively. The Trebišnjica River traverses through its catchment. The mean annual discharge, after the canalization of over 60 km of its watercourse with spray concrete (in the time span 1981–2011), is 24.05 m3 s−1. Before massive civil engineering work which took place during 1968–1980, the mean annual discharge was 28.35 m3 s−1. There is a project for construction of the hydro-electric power plant (HEPP) Ombla, which will exclusively use groundwater from the Ombla Spring karst aquifer. The underground dam will be constructed about 200 m behind the existing karst spring outflow in the karst massif, by injecting a grout curtain. The top of the grout curtain is planned to be at an altitude of 130 m a.s.l. This karst system is complex, sensitive, vulnerable and ecologically extremely valuable. The grout curtain, as well as the HEPP Ombla development, could lead to extremely dangerous technical and environmental consequences. In this paper some probable, negative consequences of the HEPP Ombla construction and development are explained. The HEPP Ombla could result in many large and hard-to-predict negative consequences which are specific for this particular HEPP, for example (1) severe spring discharge change; (2) unpredictable regional groundwater redistribution; (3) threatening of endemic fauna; (4) induced seismicity; (5) induced sinkholes; (6) occurrence of landslides; (7) conflict regarding internationally shared karst aquifers; (8) intensification of karst flash floods; (9) sea water intrusion in coastal karst aquifer; etc.


2011 ◽  
Vol 5 (4) ◽  
pp. 1099-1113 ◽  
Author(s):  
S. Gascoin ◽  
C. Kinnard ◽  
R. Ponce ◽  
S. Lhermitte ◽  
S. MacDonell ◽  
...  

Abstract. Quantitative assessment of glacier contribution to present-day streamflow is a prerequisite to the anticipation of climate change impact on water resources in the Dry Andes. In this paper we focus on two glaciated headwater catchments of the Huasco Basin (Chile, 29° S). The combination of glacier monitoring data for five glaciers (Toro 1, Toro 2, Esperanza, Guanaco, Estrecho and Ortigas) with five automatic streamflow records at sites with glacier coverage of 0.4 to 11 % allows the estimation of the mean annual glacier contribution to discharge between 2003/2004 and 2007/2008 hydrological years. In addition, direct manual measurements of glacier runoff were conducted in summer at the snouts of four glaciers, which provide the instantaneous contribution of glacier meltwater to stream runoff during summer. The results show that the mean annual glacier contribution to streamflow ranges between 3.3 and 23 %, which is greater than the glaciated fraction of the catchments. We argue that glacier contribution is partly enhanced by the effect of snowdrift from the non-glacier area to the glacier surface. Glacier mass loss is evident over the study period, with a mean of −0.84 m w.e. yr−1 for the period 2003/2004–2007/2008, and also contributes to increase glacier runoff. An El Niño episode in 2002 resulted in high snow accumulation, modifying the hydrological regime and probably reducing the glacier contribution in favor of seasonal snowmelt during the subsequent 2002/2003 hydrological year. At the hourly timescale, summertime glacier contributions are highly variable in space and time, revealing large differences in effective melting rates between glaciers and glacierets (from 1 mm w.e. h−1 to 6 mm w.e. h−1).


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Ming-jin Zhan ◽  
Lingjun Xia ◽  
Longfei Zhan ◽  
Yuanhao Wang

Trends in soil temperature are important but rarely reported indicators of climate change. Based on daily air and soil temperatures (depth: 0, 20, 80, and 320 cm) recorded at the Nanchang Weather Station (1961–2018), this study investigated the variation trend, abrupt changes, and years of anomalous annual and seasonal mean air and soil temperatures. The differences and relationships between annual air and soil temperatures were also analyzed. The results showed close correlations between air temperature and soil temperature at different depths. Annual and seasonal mean air and soil temperatures mainly displayed significant trends of increase over the past 58 years, although the rise of the mean air temperature and the mean soil temperature was asymmetric. The rates of increase in air temperature and soil temperature (depth: 0, 20, and 80 cm) were most obvious in spring; the most significant increase in soil temperature at the depth of 320 cm was in summer. Mean soil temperature displayed a decreasing trend with increasing soil depth in both spring and summer. Air temperature was lower than the soil temperature at depths of 0 and 20 cm but higher than the soil temperature at depths of 80 and 320 cm in spring and summer. Mean ground temperature had a rising trend with increasing soil depth in autumn and winter. Air temperature was lower than the soil temperature at all depths in autumn and winter. Years with anomalously low air temperature and soil temperature at depths of 0, 20, 80, and 320 cm were relatively consistent in winter. Years with anomalous air and soil temperatures (depths: 0, 20, and 80 cm) were generally consistent; however, the relationship between air temperature and soil temperature at 320 cm depth was less consistent. The findings provide a basis for understanding and assessing climate change impact on terrestrial ecosystems.


2012 ◽  
Vol 52 (No. 7) ◽  
pp. 306-315 ◽  
Author(s):  
J. Ďurský ◽  
J. Škvarenina ◽  
J. Minďáš ◽  
A. Miková

&nbsp;The paper presents the results of a regional analysis of climate change impacts on Norway spruce growth in the north-western part of Slovakia(Orava region). Radial increment was determined from nine X-tree sample plots established in the forests of natural character in the region. The analysis of PTT radial increment was done on tree disks cut from a height of 1.3 m by measurements of four perpendicular directions corresponding to the cardinal points. It was derived from the tree-ring width measured at breast height (1.3 m) while all the basic principles of tree-ring analyses were observed (transport and borehole treatment, measurements with digital positiometer to the nearest 0.01 mm, synchronisation of the tree-ring diagrams). A dendroclimatic model belongs to the category of empirical models based on the statistical evaluation of empirically derived dependences between the time series of tree-ring parameters and the monthly climatic characteristics. This statistical evaluation is based on a&nbsp;multiple linear regression model. Climatic models were used as basic tools for climatic change prediction. There is a&nbsp;scenario coming from the GCM category, which is derived from the models of Canadian Centre for Climate Modelling and Analysis in Victoria (British Columbia, Canada), used for a&nbsp;solution of this task. It is the latest connected model from the second generation designated CCCM 2000. For the purpose of this study the area averages were modified for the meteorological station Oravsk&aacute; Polhora with the 1951&ndash;1980 reference period. The modification includes two climatic characteristics, total monthly precipitation and monthly temperature means. The frequency analysis indicates that 24.4% of trees would react to the assumed climatic change negatively, i.e. by decreasing the increment, and 75.6% of trees would react positively. Most of the reactions are moderately positive. It is to conclude that 14.6% of trees will react to a climatic change significantly in a negative way, the reactions of 34.1% trees are considered to be unchanged and 51.3% of trees should react to the assumed climatic change positively (P = 0.95). It results from the analysis of the climatic change impact that the highest effect on stands situated on the upper forest limit can be expected.


Sign in / Sign up

Export Citation Format

Share Document