THE ASSESSMENT OF EXPOSURE TO CLIMATE CHANGE IN SOUTH-EASTERN SERBIA REGIONS

Author(s):  
Slavisa Trajkovic ◽  
Mladen Milanovic ◽  
Dragan Milicevic ◽  
Milan Gocic
Keyword(s):  
2011 ◽  
Vol 62 (3) ◽  
pp. 223 ◽  
Author(s):  
Allison Aldous ◽  
James Fitzsimons ◽  
Brian Richter ◽  
Leslie Bach

Climate change is expected to have significant impacts on hydrologic regimes and freshwater ecosystems, and yet few basins have adequate numerical models to guide the development of freshwater climate adaptation strategies. Such strategies can build on existing freshwater conservation activities, and incorporate predicted climate change impacts. We illustrate this concept with three case studies. In the Upper Klamath Basin of the western USA, a shift in land management practices would buffer this landscape from a declining snowpack. In the Murray–Darling Basin of south-eastern Australia, identifying the requirements of flood-dependent natural values would better inform the delivery of environmental water in response to reduced runoff and less water. In the Savannah Basin of the south-eastern USA, dam managers are considering technological and engineering upgrades in response to more severe floods and droughts, which would also improve the implementation of recommended environmental flows. Even though the three case studies are in different landscapes, they all contain significant freshwater biodiversity values. These values are threatened by water allocation problems that will be exacerbated by climate change, and yet all provide opportunities for the development of effective climate adaptation strategies.


2015 ◽  
Vol 153 (5) ◽  
pp. 798-824 ◽  
Author(s):  
Y. BAO ◽  
G. HOOGENBOOM ◽  
R. W. McCLENDON ◽  
J. O. PAZ

SUMMARYDue to the potential impact of climate change and climate variability on rainfed production systems, both farmers and policy makers will have to rely more on short- and long-term yield projections. The goal of this study was to develop a procedure for calibrating the Cropping System Model (CSM)-CROPGRO-Soybean model for six cultivars, to determine the potential impact of climate change on rainfed soybean for five locations in Georgia, USA, and to provide recommendations for potential adaptation strategies for soybean production in Georgia and other south-eastern states. The Genotype Coefficient Calculator (GENCALC) software package was applied for calibration of the soybean cultivar coefficients using variety trial data. The root mean square error (RMSE) between observed and simulated grain yield ranged from 201 to 413 kg/ha for the six cultivars. Generally, the future climate scenarios showed an increase in temperature which caused a decrease in the number of days to maturity for all varieties and for all locations. This will benefit late-planted soybean production slightly, while the increase in precipitation and carbon dioxide (CO2) concentration will result in a yield increase. This was the highest for Calhoun and Williamson and ranged from 31 to 49% for the climate change projections for 2050. However, a large reduction in precipitation caused a decrease in yield for Midville, especially based on the climate scenarios of the Global Climate Models (GCMs) Commonwealth Scientific and Industrial Research Organisation's model CSIRO-Mk3.0 and Geophysical Fluid Dynamics Laboratory's model GFDL-CM2.1. Overall, Calhoun, Williamson, Plains and Tifton will probably be more suitable for rainfed soybean production over the next 40 years than Midville. Farmers might shift to a later planting date, around 5 June, for the locations that were evaluated in the present study to avoid potential heat and drought stress during the summer months. The cultivars AG6702, AGS758RR and S80-P2 could be selected for rainfed soybean production since they had the highest rainfed yields among the six cultivars. In general, the present study showed that there are crop management options for soybean production in Georgia and the south-eastern USA that are adapted for the potential projected climate change conditions.


2020 ◽  
Author(s):  
K. G. Pembleton ◽  
B. R. Cullen ◽  
R. P. Rawnsley ◽  
T. Ramilan

2009 ◽  
Vol 18 (5) ◽  
pp. 575-585 ◽  
Author(s):  
Ralph Mac Nally ◽  
Gregory Horrocks ◽  
Hania Lada ◽  
P. Sam Lake ◽  
James R. Thomson ◽  
...  

2017 ◽  
Vol 68 (12) ◽  
pp. 2366 ◽  
Author(s):  
Paul I. Boon

The distribution and productivity of mangroves is directly affected by a wide range of climatic drivers, including temperature, frost, rainfall, evaporation and storm activity, which, in turn, influence a suite of secondary drivers, including changes in freshwater run-off and sediment supply, groundwater dynamics and inter-species competitiveness. The highest-latitude expression of mangroves globally is at Millers Landing, Victoria (38°45′S), and because the vigour and productivity of mangroves across much of Victoria is thought to be limited by low winter temperatures and the incidence and severity of frosts, it is likely that mangroves will be among the first plant communities to be affected by climate change in coastal south-eastern Australia. An increase in plant vigour is likely, but there are almost no historical data with which to compare current rates of primary production. An extension of mangroves to higher latitudes on the mainland is impossible because of the geomorphology of the land that lies further to the south. Small-scale changes in distribution, including the progressive encroachment of mangroves into coastal saltmarsh, are likely to be among the clearest indications of the response of mangroves to a warming climate. Increased effort into tracking changes in mangrove vigour, productivity and distribution is clearly warranted.


2009 ◽  
Vol 163 (4) ◽  
pp. 293-297 ◽  
Author(s):  
F. Kenyon ◽  
N.D. Sargison ◽  
P.J. Skuce ◽  
F. Jackson

Soil Research ◽  
2019 ◽  
Vol 57 (5) ◽  
pp. 467 ◽  
Author(s):  
Jonathan M. Gray ◽  
Thomas F. A. Bishop

Climate change will lead to altered soil conditions that will impact on plant growth in both agricultural and native ecosystems. Additionally, changes in soil carbon storage will influence carbon accounting schemes that may play a role in climate change mitigation programs. We applied a digital soil mapping approach to examine and map (at 100-m resolution) potential changes in three important soil properties – soil organic carbon (SOC), pH and sum-of-bases (common macro-nutrients) – resulting from projected climate change over south-eastern Australia until ~2070. Four global climate models were downscaled with three regional models to give 12 climate models, which were used to derive changes for the three properties across the province, at 0–30 and 30–100 cm depth intervals. The SOC stocks were projected to decline over the province, while pH and sum-of-bases were projected to increase; however, the extent of change varied throughout the province and with different climate models. The average changes primarily reflected the complex interplay of changing temperatures and rainfall throughout the province. The changes were also influenced by the operating environmental conditions, with a uniform pattern of change particularly demonstrated for SOC over 36 combinations of current climate, parent material and land use. For example, the mean decline of SOC predicted for the upper depth interval was 15.6 Mg ha–1 for wet–mafic–native vegetation regimes but only 3.1 Mg ha–1 for dry–highly siliceous–cropping regimes. The predicted changes reflected only those attributable to the projected climate change and did not consider the influence of ongoing and changing land management practices.


Sign in / Sign up

Export Citation Format

Share Document