Electrodeposited palladium as efficient electrocatalyst for hydrazine and methanol electro-oxidation and detection

Author(s):  
Jelena Dušan Lović

Electrodeposited palladium was used as an electrocatalyst for electrochemical oxidation of hydrazine and methanol and the development of a sensitive platform for their detection. The electrochemical behavior of the electrode was evaluated by cyclic voltammetry (CV) while electroanalytical properties were determined by means of differential pulse voltammetry (DPV). The electrodeposited Pd catalyst exhibited good electrocatalytic activity towards the oxidation of hydrazine in neutral solution and methanol oxidation in alkaline solution. Under optimized DPV conditions, the electrodeposited Pd electrode shows good sensing capability in hydrazine and methanol detection.

2014 ◽  
Vol 6 (19) ◽  
pp. 7809-7813 ◽  
Author(s):  
Gulcemal Yildiz ◽  
Ugur Tasdoven ◽  
Necati Menek

The electrochemical behavior of luminol, an important molecule in forensic science, was studied in Britton–Robinson buffer solution (pH 2–pH 13) at a glassy carbon electrode using cyclic voltammetry and differential pulse voltammetry techniques.


Author(s):  
Nadezhda M. Berezina ◽  
Nataliya N. Tumanova ◽  
Ngok Do Minh ◽  
Mikhail I. Bazanov

The comparative study of electrochemical behaviour of 5-(pyrid-3-yl)-10,15,20-tri-phenylporphyrin (H2(3-Py)triPhP) and its Co-, (Py)Co-complexes was carried out by the method of cyclic voltammetry in an aqueous alkaline solution. The influence of the nature of the functional substituents and the metal, as well as additional extraligand on the character of cyclic I,E- curves, values of the redox potentials and the electrocatalytic activity of the compounds in the reaction of ionization of molecular oxygen was established.


2015 ◽  
Vol 7 (10) ◽  
pp. 4159-4167 ◽  
Author(s):  
Abd-Elgawad Radi ◽  
Hossam M. Nassef ◽  
Mohamed I. Attallah

The electrochemical behavior of the antimalarial drug pyrimethamine (PMT) was examined at a screen printed carbon electrode (SPCE) in different aqueous supporting electrolytes using cyclic voltammetry (CV) and differential pulse voltammetry (DPV).


2020 ◽  
Vol 16 (4) ◽  
pp. 393-403 ◽  
Author(s):  
Renjini Sadhana ◽  
Pinky Abraham ◽  
Anithakumary Vidyadharan

Introduction: In this study, solar exfoliated graphite oxide modified glassy carbon electrode was used for the anodic oxidation of epinephrine in a phosphate buffer medium at pH7. The modified electrode showed fast response and sensitivity towards Epinephrine Molecule (EP). The electrode was characterized electrochemically through Cyclic Voltammetry (CV) and Differential Pulse Voltammetry (DPV). Area of the electrode enhanced three times during modification and studies reveal that the oxidation process of EP occurs by an adsorption controlled process involving two electrons. The results showed a detection limit of 0.50 ± 0.01μM with a linear range up to 100 μM. The rate constant calculated for the electron transfer reaction is 1.35 s-1. The electrode was effective for simultaneous detection of EP in the presence of Ascorbic Acid (AA) and Uric Acid (UA) with well-resolved signals. The sensitivity, selectivity and stability of the sensor were also confirmed. Methods: Glassy carbon electrode modified by reduced graphene oxide was used for the detection and quantification of epinephrine using cyclic voltammetry and differential pulse voltammetry. Results: The results showed an enhancement in the electrocatalytic oxidation of epinephrine due to the increase in the effective surface area of the modified electrode. The anodic transfer coefficient, detection limit and electron transfer rate constant of the reaction were also calculated. Conclusion: The paper reports the determination of epinephrine using reduced graphene oxide modified glassy carbon electrode through CV and DPV. The sensor exhibited excellent reproducibility and repeatability for the detection of epinephrine and also its simultaneous detection of ascorbic acid and uric acid, which coexist in the biological system.


2020 ◽  
Vol 852 ◽  
pp. 70-79
Author(s):  
Geng Li

In order to study the electrochemical sensor of nanometer mechanism materials to realize the high sensitive detection of different chemical molecules, in this research, the preparation methods of molybdenum dioxide nanomaterials, molybdenum dioxide/metal particles (Au, Pt, Au@Pt) composites and the preparation of molybdenum dioxide nanomaterials, molybdenum dioxide /Au composite nanomaterials, molybdenum dioxide /Pt composite nanomaterials and molybdenum dioxide /Au @Pt composite nanomaterials were introduced. Then the electrochemical behavior of several modified electrodes, electrochemical behavior in catechol system, scanning and pH were applied to the modified electrode. Finally, the electrode p-catechol system was detected by differential pulse voltammetry and the actual samples were analyzed. The results showed that compared with unmodified electrode materials, the electrode modified by molybdenum dioxide nanomaterials, molybdenum dioxide /Au composite nanomaterials, molybdenum dioxide /Pt composite nanomaterials and molybdenum dioxide /Au @Pt composite nanomaterials has better electrocatalytic performance and the detection of catechol has a good effect. Among them, the electrochemical sensor constructed by MoS2-Au@Pt composite has the best detection performance for catechol. The results have a good guiding significance for the performance improvement of electrochemical sensor.


2015 ◽  
Vol 7 (20) ◽  
pp. 8673-8682 ◽  
Author(s):  
Nagaraj P. Shetti ◽  
Shweta J. Malode ◽  
Sharanappa T. Nandibewoor

Gold electrode was used for the oxidation of captopril in phosphate buffer solution pH 3.6 to study the influence of several physico-chemical parameters like potential, scan rate, pH and concentration by cyclic, linear sweep and differential pulse voltammetry.


2012 ◽  
Vol 37 (3) ◽  
pp. 2579-2587 ◽  
Author(s):  
Xiaoguang Wang ◽  
Weimin Wang ◽  
Zhen Qi ◽  
Changchun Zhao ◽  
Hong Ji ◽  
...  

2013 ◽  
Vol 78 (6) ◽  
pp. 827-838 ◽  
Author(s):  
Maria-Laura Soare ◽  
Eleonora-Mihaela Ungureanu ◽  
Emilian Georgescu ◽  
Liviu Birzan

This work is devoted to the synthesis and characterization of new indolizine derivatives. Particular attention was paid to the electrochemical investigations by cyclic voltammetry and differential pulse voltammetry. The redox processes for each compound were established, analyzed and assessed to the particular functional groups at which they take place. This assessment was based on detailed comparison between the electrochemical behaviour of the compounds, similarities in their structure, as well as substituent effects.


Sign in / Sign up

Export Citation Format

Share Document