scholarly journals The Diversity, Growth Promoting Abilities and Anti-microbial Activities of Bacteria Isolated from the Fruiting Body of Agaricus bisporus

2017 ◽  
Vol 66 (2) ◽  
pp. 201-207 ◽  
Author(s):  
Quanju Xiang ◽  
Lihua Luo ◽  
Yuhuan Liang ◽  
Qiang Chen ◽  
Xiaoping Zhang ◽  
...  

Agaricus bisporus plays an important role in ecological processes and is one of the most widely cultivated mushrooms worldwide. Mushroom growth-promoting bacteria have been isolated from casing soil and compost, but microorganisms in the fruiting body have received only a little attention. To get an overview of phylogenetic diversity of microorganisms in the fruiting body of A. bisporus, as well as to screen antimicrobial and mushroom growth-promoting strains, and eventually intensify mushroom production, we isolated and characterized microorganisms from the fruiting body of A. bisporus. In total, 55 bacterial strains were isolated, among which nine isolates represented Actinomycetes. All the isolates were analyzed by 16S rRNA gene RFLP and sixteen representative strains by 16S rRNA gene sequencing. According to the phylogenetic analysis, eleven isolates represented the Gram positive Bacillus, Lysinibacillus, Paenibacillus, Pandorea and Streptomyces genera, and five isolates belonged to the Gram negative Alcaligenes and Pseudomonas genera. The bacteria isolated from the fruiting body of A. bisporus had broad-spectrum antimicrobial activities and potential mushroom growth-promoting abilities.

2005 ◽  
Vol 55 (6) ◽  
pp. 2309-2315 ◽  
Author(s):  
Yuichi Nogi ◽  
Hideto Takami ◽  
Koki Horikoshi

Twenty alkaliphilic bacterial strains from industrial applications or enzyme studies were subjected to a polyphasic taxonomic investigation, including 16S rRNA gene sequencing, determination of genomic DNA G+C content, DNA–DNA hybridization, fatty acid analysis and standard bacteriological characterization. By comparing the groupings obtained based on the genomic DNA G+C content and the construction of a phylogenetic tree based on the 16S rRNA gene sequence, 12 clusters of similar strains were recognized. DNA–DNA hybridization revealed that these clusters represented five novel genospecies. Further analysis supported the proposal of five novel species in the genus Bacillus: Bacillus wakoensis sp. nov. (type strain N-1T=JCM 9140T=DSM 2521T), Bacillus hemicellulosilyticus sp. nov. (type strain C-11T=JCM 9152T=DSM 16731T), Bacillus cellulosilyticus sp. nov. (type strain N-4T=JCM 9156T=DSM 2522T), Bacillus akibai sp. nov. (type strain 1139T=JCM 9157T=ATCC 43226T) and Bacillus mannanilyticus sp. nov. (type strain AM-001T=JCM 10596T=DSM 16130T).


2006 ◽  
Vol 56 (6) ◽  
pp. 1263-1271 ◽  
Author(s):  
Guixiang Peng ◽  
Huarong Wang ◽  
Guoxia Zhang ◽  
Wei Hou ◽  
Yang Liu ◽  
...  

Fifteen bacterial strains isolated from molasses grass (Melinis minutiflora Beauv.) were identified as nitrogen-fixers by using the acetylene-reduction assay and PCR amplification of nifH gene fragments. These strains were classified as a unique group by insertion sequence-PCR fingerprinting, SDS-PAGE protein patterns, DNA–DNA hybridization, 16S rRNA gene sequencing and morphological characterization. Phylogenetic analysis of the 16S rRNA gene indicated that these diazotrophic strains belonged to the genus Azospirillum and were closely related to Azospirillum lipoferum (with 97.5 % similarity). In all the analyses, including in addition phenotypic characterization using Biolog MicroPlates and comparison of cellular fatty acids, this novel group was found to be different from the most closely related species, Azospirillum lipoferum. Based on these data, a novel species, Azospirillum melinis sp. nov., is proposed for these endophytic diazotrophs of M. minutiflora, with TMCY 0552T (=CCBAU 5106001T=LMG 23364T=CGMCC 1.5340T) as the type strain.


2004 ◽  
Vol 54 (4) ◽  
pp. 1227-1234 ◽  
Author(s):  
Wolf-Rainer Abraham ◽  
Carsten Strömpl ◽  
Marc Vancanneyt ◽  
Antonio Bennasar ◽  
Jean Swings ◽  
...  

Two cauliform bacteria (CM243T and CM251) isolated by J. Poindexter from the Atlantic Ocean were characterized by 16S rRNA gene sequencing, TaqI restriction fragment length polymorphism and single-strand conformation polymorphism analyses of the internally transcribed 16S–23S rDNA spacer (ITS1) region, analysis of fatty acids from cellular lipids, mass spectrometry of polar lipids and physiological properties. The two strains showed very low diversity of polar lipids with diacyl-sulfoquinovosyl glycerols as the predominant lipids. The two bacterial strains were observed to have nearly identical 16S rRNA gene sequences and could not be differentiated by their ITS1 regions. The isolates differed from species of the genus Maricaulis by their 16S rRNA gene sequences, polar lipids and fatty acid patterns. On the basis of the genotypic analyses and estimations of phylogenetic similarities, physiological and chemotaxonomic characteristics, it is proposed that the isolates represent a new genus and species, for which the name Woodsholea maritima gen. nov., sp. nov. (type strain CM243T=VKM B-1512T=LMG 21817T) is proposed.


2010 ◽  
Vol 60 (10) ◽  
pp. 2430-2440 ◽  
Author(s):  
Carrie L. Brady ◽  
Ilse Cleenwerck ◽  
Stephanus N. Venter ◽  
Katrien Engelbeen ◽  
Paul De Vos ◽  
...  

Bacterial strains belonging to DNA hybridization groups (HG) II, IV and V, in the Erwinia herbicola–Enterobacter agglomerans complex, of Brenner et al. [Int J Syst Bacteriol 34 (1984), 45–55] were suggested previously to belong to the genus Pantoea, but have never been formally described and classified. Additionally, it has been shown in several studies that Pectobacterium cypripedii is more closely related to species of Pantoea than to those of Pectobacterium. In this study, the phylogenetic positions of Brenner's DNA HG II, IV and V and Pectobacterium cypripedii were re-examined by both 16S rRNA gene sequencing and multilocus sequence analyses (MLSA) based on the gyrB, rpoB, atpD and infB genes. The analyses revealed that DNA HG II, IV and V and Pectobacterium cypripedii form five separate branches within the genus Pantoea (strains from HG V were split into two branches). DNA–DNA hybridization data further confirmed that DNA HG II, IV and V constitute four separate species. Pectobacterium cypripedii was shown to be a close phylogenetic relative of Pantoea dispersa and DNA HG IV by both 16S rRNA gene sequence and MLSA analyses. Biochemical analyses performed on strains from DNA HG II, IV and V and Pectobacterium cypripedii confirmed their taxonomic position within the genus Pantoea and revealed phenotypic characteristics that allow the differentiation of these species from each other and from their closest phylogenetic neighbours. It is proposed to emend the description of the genus Pantoea and to describe Pantoea septica sp. nov. for DNA HG II (type strain LMG 5345T =BD 874T =CDC 3123-70T), Pantoea eucrina sp. nov. for DNA HG IV (type strain LMG 2781T =BD 872T =CDC 1741-71T =LMG 5346T), Pantoea brenneri sp. nov. for strains of DNA HG V excluding LMG 24534 (type strain LMG 5343T =BD 873T =CDC 3482-71T) and Pantoea conspicua sp. nov. for the remaining strain of DNA HG V (type strain LMG 24534T =BD 805T =CDC 3527-71T) and to transfer Pectobacterium cypripedii to the genus as Pantoea cypripedii comb. nov. (type strain LMG 2657T =ATCC 29267T =DSM 3873T =LMG 2655T).


2013 ◽  
Vol 63 (Pt_10) ◽  
pp. 3691-3696 ◽  
Author(s):  
Toshihiko Takada ◽  
Takashi Kurakawa ◽  
Hirokazu Tsuji ◽  
Koji Nomoto

Three Gram-stain-positive, obligately anaerobic, non-motile, non-spore-forming, spindle-shaped bacterial strains (HT03-11T, KO-38 and TT-111), isolated from human faeces were characterized by phenotypic and molecular taxonomic methods. Comparative 16S rRNA gene sequencing showed that the strains were highly related to each other genetically (displaying >99 % sequence similarity) and represented a previously unknown subline within the Blautia coccoides rRNA group of organisms (cluster XIVa). The closest phylogenetic neighbours of strain HT03-11T were Clostridium bolteae WAL 16351T (93.7 % 16S rRNA gene sequence similarity) and Clostridium saccharolyticum WM1T (93.7 % similarity). All isolates produced lactic acid, formic acid, acetic acid and succinic acid as fermentation end products from glucose. Their chemotaxonomic properties included lysine as the cell wall diamino acid and C16 : 0, C18 : 1ω7c DMA and C16 : 0 DMA as the major fatty acids. The G+C contents of the genomic DNA were 46.9–47.2 mol% (HPLC). Several phenotypic and chemotaxonomic characteristics could be readily used to differentiate the isolates from phylogenetically related clostridia. Therefore, strains HT03-11T, KO-38 and TT-111 represent a novel species in a new genus of the family Lachnospiraceae , for which the name Fusicatenibacter saccharivorans gen. nov., sp. nov. is proposed. The type strain of the type species is HT03-11T ( = YIT 12554T = JCM 18507T = DSM 26062T).


2010 ◽  
Vol 60 (10) ◽  
pp. 2272-2276 ◽  
Author(s):  
Deanna Jannat-Khah ◽  
Reiner M. Kroppenstedt ◽  
Hans-Peter Klenk ◽  
Cathrin Spröer ◽  
Peter Schumann ◽  
...  

Four nocardioform bacterial strains isolated from clinical respiratory sources were characterized using a polyphasic taxonomic approach. On the basis of 16S rRNA gene sequence analyses, these strains were found to be 100 % similar to each other and were shown to belong to the genus Nocardia. Chemotaxonomic data [major menaquinone: ω-cyclic isoprene side chain MK-8(H4cycl ); major polar lipids: diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and phosphatidylinositol mannosides; major fatty acids: monounsaturated fatty acids with a considerable amount of tuberculostearic acid; and mycolic acids (52–62 carbon atoms)] were consistent with the assignment of the novel strains to the genus Nocardia. Comparative phylogenetic analysis of the 16S rRNA gene sequences showed that the novel strains were related to Nocardia cerradoensis DSM 44546T (99.8 %) and Nocardia aobensis JCM 12352T (99.6 %). Analysis of gyrB gene sequences showed these strains were related to N. aobensis (96.6 %) and to N. cerradoensis (96.3 %). The results suggest that gyrB gene sequencing is a more powerful tool than 16S rRNA gene sequencing for taxonomic identification within the genus Nocardia. DNA–DNA hybridization and physiological and biochemical tests supported the genotypic and phenotypic differentiation of the novel strains from related species. These data indicated that the new strains represent a novel species within the genus Nocardia, for which the name Nocardia mikamii sp. nov. is proposed, with strain W8061T (=DSM 45174T=JCM 15508T) as the type strain.


2019 ◽  
Vol 13 (1) ◽  
pp. 90-101
Author(s):  
Sanju Kumari ◽  
Utkarshini Sharma ◽  
Rohit Krishna ◽  
Kanak Sinha ◽  
Santosh Kumar

Background: Cellulolysis is of considerable economic importance in laundry detergents, textile and pulp and paper industries and in fermentation of biomass into biofuels. Objective: The aim was to screen cellulase producing actinobacteria from the fruit orchard because of its requirement in several chemical reactions. Methods: Strains of actinobacteria were isolated on Sabouraud’s agar medium. Similarities in cultural and biochemical characterization by growing the strains on ISP medium and dissimilarities among them perpetuated to recognise nine groups of actinobacteria. Cellulase activity was measured by the diameter of clear zone around colonies on CMC agar and the amount of reducing sugar liberated from carboxymethyl cellulose in the supernatant of the CMC broth. Further, 16S rRNA gene sequencing and molecular characterization were placed before NCBI for obtaining recognition with accession numbers. Results: Prominent clear zones on spraying Congo Red were found around the cultures of strains of three groups SK703, SK706, SK708 on CMC agar plates. The enzyme assay for carboxymethylcellulase displayed extra cellulase activity in broth: 0.14, 0.82 and 0.66 µmol mL-1 min-1, respectively at optimum conditions of 35°C, pH 7.3 and 96 h of incubation. However, the specific cellulase activities per 1 mg of protein did not differ that way. It was 1.55, 1.71 and 1.83 μmol mL-1 min-1. The growing mycelia possessed short compact chains of 10-20 conidia on aerial branches. These morphological and biochemical characteristics, followed by their verification by Bergey’s Manual, categorically allowed the strains to be placed under actinobacteria. Further, 16S rRNA gene sequencing, molecular characterization and their evolutionary relationship through phylogenetics also confirmed the putative cellulase producing isolates of SK706 and SK708 subgroups to be the strains of Streptomyces. These strains on getting NCBI recognition were christened as Streptomyces glaucescens strain SK91L (KF527284) and Streptomyces rochei strain SK78L (KF515951), respectively. Conclusion: Conclusive evidence on the basis of different parameters established the presence of cellulase producing actinobacteria in the litchi orchard which can convert cellulose into fermentable sugar.


Sign in / Sign up

Export Citation Format

Share Document