Privacy Budget Allocation Technique Based on Variable Length Window for Traffic Data Publishing with Differential Privacy in Road Networks

2018 ◽  
Vol 45 (9) ◽  
pp. 957-968
Author(s):  
Gunhyung Jo ◽  
Kangsoo Jung ◽  
Seog Park
2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Yunlu Bai ◽  
Geng Yang ◽  
Yang Xiang ◽  
Xuan Wang

For data analysis with differential privacy, an analysis task usually requires multiple queries to complete, and the total budget needs to be divided into different parts and allocated to each query. However, at present, the budget allocation in differential privacy lacks efficient and general allocation strategies, and most of the research tends to adopt an average or exclusive allocation method. In this paper, we propose two series strategies for budget allocation: the geometric series and the Taylor series. We show the different characteristics of the two series and provide a calculation method for selecting the key parameters. To better reflect a user’s preference of noise during the allocation, we explored the relationship between sensitivity and noise in detail, and, based on this, we propose an optimization for the series strategies. Finally, to prevent collusion attacks and improve security, we provide three ideas for protecting the budget sequence. Both the theoretical analysis and experimental results show that our methods can support more queries and achieve higher utility. This shows that our series allocation strategies have a high degree of flexibility which can meet the user’s need and allow them to be better applied to differentially private algorithms to achieve high performance while maintaining the security.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Jing Zhao ◽  
Shubo Liu ◽  
Xingxing Xiong ◽  
Zhaohui Cai

Privacy protection is one of the major obstacles for data sharing. Time-series data have the characteristics of autocorrelation, continuity, and large scale. Current research on time-series data publication mainly ignores the correlation of time-series data and the lack of privacy protection. In this paper, we study the problem of correlated time-series data publication and propose a sliding window-based autocorrelation time-series data publication algorithm, called SW-ATS. Instead of using global sensitivity in the traditional differential privacy mechanisms, we proposed periodic sensitivity to provide a stronger degree of privacy guarantee. SW-ATS introduces a sliding window mechanism, with the correlation between the noise-adding sequence and the original time-series data guaranteed by sequence indistinguishability, to protect the privacy of the latest data. We prove that SW-ATS satisfies ε-differential privacy. Compared with the state-of-the-art algorithm, SW-ATS is superior in reducing the error rate of MAE which is about 25%, improving the utility of data, and providing stronger privacy protection.


2019 ◽  
Vol 90 ◽  
pp. 158-174 ◽  
Author(s):  
Chunhui Piao ◽  
Yajuan Shi ◽  
Jiaqi Yan ◽  
Changyou Zhang ◽  
Liping Liu

2021 ◽  
Author(s):  
Wenqing Cheng ◽  
Ruxue Wen ◽  
Haojun Huang ◽  
Wang Miao ◽  
Chen Wang

Sign in / Sign up

Export Citation Format

Share Document