Use of artificial intelligence in skin cancer diagnosis and management

2020 ◽  
Vol 213 (6) ◽  
pp. 256
Author(s):  
Miki Wada ◽  
ZongYuan Ge ◽  
Stephen J Gilmore ◽  
Victoria J Mar
2020 ◽  
Vol 66 (10) ◽  
pp. 101046
Author(s):  
Joshua M. Moran ◽  
Paul O. Phelps

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Biying Zhou ◽  
Behdad Arandian

Skin cancer is one of the most common types of cancers that is sometimes difficult for doctors and experts to diagnose. The noninvasive dermatoscopic method is a popular method for observing and diagnosing skin cancer. Because this method is based on ocular inference, the skin cancer diagnosis by the dermatologists is difficult, especially in the early stages of the disease. Artificial intelligence is a proper complementary tool that can be used alongside the experts to increase the accuracy of the diagnosis. In the present study, a new computer-aided method has been introduced for the diagnosis of the skin cancer. The method is designed based on combination of deep learning and a newly introduced metaheuristic algorithm, namely, Wildebeest Herd Optimization (WHO) Algorithm. The method uses an Inception convolutional neural network for the initial features’ extraction. Afterward, the WHO algorithm has been employed for selecting the useful features to decrease the analysis time complexity. The method is then performed to an ISIC-2008 skin cancer dataset. Final results of the feature selection based on the proposed WHO are compared with three other algorithms, and the results have indicated good results for the system. Finally, the total diagnosis system has been compared with five other methods to indicate its effectiveness against the studied methods. Final results showed that the proposed method has the best results than the comparative methods.


Author(s):  
Trishala Das ◽  
Vijay Kumar ◽  
Amresh Prakash ◽  
Andrew M. Lynn

2020 ◽  
Author(s):  
Abdulrahman Takiddin ◽  
Jens Schneider ◽  
Yin Yang ◽  
Alaa Abd-Alrazaq ◽  
Mowafa Househ

BACKGROUND Skin cancer is the most common cancer type affecting humans. Traditional skin cancer diagnosis methods are costly, require a professional physician, and take time. Hence, to aid in diagnosing skin cancer, Artificial Intelligence (AI) tools are being used, including shallow and deep machine learning-based techniques that are trained to detect and classify skin cancer using computer algorithms and deep neural networks. OBJECTIVE The aim of this study is to identify and group the different types of AI-based technologies used to detect and classify skin cancer. The study also examines the reliability of the selected papers by studying the correlation between the dataset size and number of diagnostic classes with the performance metrics used to evaluate the models. METHODS We conducted a systematic search for articles using IEEE Xplore, ACM DL, and Ovid MEDLINE databases following the PRISMA Extension for Scoping Reviews (PRISMA-ScR) guidelines. The study included in this scoping review had to fulfill several selection criteria; to be specifically about skin cancer, detecting or classifying skin cancer, and using AI technologies. Study selection and data extraction were conducted by two reviewers independently. Extracted data were synthesized narratively, where studies were grouped based on the diagnostic AI techniques and their evaluation metrics. RESULTS We retrieved 906 papers from the 3 databases, but 53 studies were eligible for this review. While shallow techniques were used in 14 studies, deep techniques were utilized in 39 studies. The studies used accuracy (n=43/53), the area under receiver operating characteristic curve (n=5/53), sensitivity (n=3/53), and F1-score (n=2/53) to assess the proposed models. Studies that use smaller datasets and fewer diagnostic classes tend to have higher reported accuracy scores. CONCLUSIONS The adaptation of AI in the medical field facilitates the diagnosis process of skin cancer. However, the reliability of most AI tools is questionable since small datasets or low numbers of diagnostic classes are used. In addition, a direct comparison between methods is hindered by a varied use of different evaluation metrics and image types.


2012 ◽  
Vol 109 ◽  
pp. 1-7 ◽  
Author(s):  
Michael Marberger ◽  
Jelle Barentsz ◽  
Mark Emberton ◽  
Jonas Hugosson ◽  
Stacy Loeb ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document