Analytical Methodology for the Determination of Organochlorine Pesticides in Vegetation

2012 ◽  
Vol 95 (5) ◽  
pp. 1291-1310 ◽  
Author(s):  
Elisa Beceiro-González ◽  
María J González-Castro ◽  
Soledad Muniategui-Lorenzo ◽  
Purificación López-Mahía ◽  
Darío Prada-Rodríguez

Abstract Due to the extensive use of organochlorine pesticides (OCPs) for agricultural purposes and their high persistence and low biodegradability, they have become an important group of contaminants. Detection and quantification of pesticide residues in food, particularly fruits and vegetables, is of growing concern for producers, consumers, and governments. The most widely used pretreatment for the extraction of pesticides in plants is based on solvent extraction liquid-solid extraction (LSE). LSE can be carried out using Soxhlet, shake-flask, homogenization, sonication, and, more recently, microwave-assisted extraction, pressurized liquid extraction, and supercritical fluid extraction. Furthermore, new analytical procedures using the extraction with sorbents, such as solid-phase micro-extraction, stir bar sorptive extraction, and matrix solid-phase dispersion, have also been used. On the other hand, a wide range of cleanup methods (liquid–liquid extraction, solid-phase extraction, gel permeation chromatography, and dispersive solid-phase extraction; and chromatographic techniques with electron capture detector and mass spectrometry detector; and HPLC with a ultraviolet detector are reported in the literature. This article reviews the applicability, advantages, and disadvantages of various sample preparation techniques (traditional and new techniques) for the analysis of OCPs in different plants and plant materials. It covers more than 15 years of published methods in which pesticide residues have been determined in a wide range of vegetation samples (fruits, horticultural samples, medicinal plants, tree leaves, etc.) by the use of chromatographic techniques after various sample preparation steps. A great number of applications in different plant material are provided. To the best of the authors' knowledge, previously published reviews have not covered as wide and exhaustive range of vegetation matrixes as presented here. A summary of pesticide levels cited in the literature is included.

Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4900
Author(s):  
Maria Celeiro ◽  
Carmen Garcia-Jares ◽  
Maria Llompart ◽  
Marta Lores

The use of cosmetics and personal care products is increasing worldwide. Their high matrix complexity, together with the wide range of products currently marketed under different forms imply a challenge for their analysis, most of them requiring a sample pre-treatment step before analysis. Classical sample preparation methodologies involve large amounts of organic solvents as well as multiple steps resulting in large time consumption. Therefore, in recent years, the trends have been moved towards the development of simple, sustainable, and environmentally friendly methodologies in two ways: (i) the miniaturization of conventional procedures allowing a reduction in the consumption of solvents and reagents; and (ii) the development and application of sorbent- and liquid-based microextraction technologies to obtain a high analyte enrichment, avoiding or significantly reducing the use of organic solvents. This review provides an overview of analytical methodology during the last ten years, placing special emphasis on sample preparation to analyse cosmetics and personal care products. The use of liquid–liquid and solid–liquid extraction (LLE, SLE), ultrasound-assisted extraction (UAE), solid-phase extraction (SPE), pressurized liquid extraction (PLE), matrix solid-phase extraction (MSPD), and liquid- and sorbent-based microextraction techniques will be reviewed. The most recent advances and future trends including the development of new materials and green solvents will be also addressed.


2019 ◽  
Vol 15 (7) ◽  
pp. 788-800 ◽  
Author(s):  
Natasa P. Kalogiouri ◽  
Victoria F. Samanidou

Background:The sample preparation is the most crucial step in the analytical method development. Taking this into account, it is easily understood why the domain of sample preparation prior to detection is rapidly developing. Following the modern trends towards the automation, miniaturization, simplification and minimization of organic solvents and sample volumes, green microextraction techniques witness rapid growth in the field of food quality and safety. In a globalized market, it is essential to face the consumers need and develop analytical methods that guarantee the quality of food products and beverages. The strive for the accurate determination of organic hazards in a famous and appreciated alcoholic beverage like wine has necessitated the development of microextraction techniques.Objective:The objective of this review is to summarize all the recent microextraction methodologies, including solid phase extraction (SPE), solid phase microextraction (SPME), liquid-phase microextraction (LPME), dispersive liquid-liquid microextraction (DLLME), stir bar sorptive extraction (SBSE), matrix solid-phase dispersion (MSPD), single-drop microextraction (SDME) and dispersive solid phase extraction (DSPE) that were developed for the determination of hazardous organic compounds (pesticides, mycotoxins, colorants, biogenic amines, off-flavors) in wine. The analytical performance of the techniques is evaluated and their advantages and limitations are discussed.Conclusion:An extensive investigation of these techniques remains vital through the development of novel strategies and the implication of new materials that could upgrade the selectivity for the extraction of target analytes.


2014 ◽  
Vol 69 (4) ◽  
Author(s):  
Norfahana Abd-Talib ◽  
Siti Hamidah Mohd-Setapar ◽  
Aidee Kamal Khamis

Over recent years, there has been an explosive growth of sample preparation techniques. Sample preparation is in most cases meant to be the isolation online or offline concentration of some components of interest or target analytes. Solid phase extraction (SPE) is a very popular technique nowadays in sample preparation. The principal is quite similar with liquid- liquid extraction (LLE) which involves partition of solutes between two phases. But, there are some differences between them and some benefits and limitations of difference types of SPE technique like presented in this paper.


2015 ◽  
Vol 51 (2) ◽  
pp. 393-401 ◽  
Author(s):  
Priscila Freitas-Lima ◽  
Flavia Isaura Santi Ferreira ◽  
Carlo Bertucci ◽  
Veriano Alexandre Júnior ◽  
Sônia Aparecida Carvalho Dreossi ◽  
...  

<p>Levetiracetam (LEV), an antiepileptic drug (AED) with favorable pharmacokinetic profile, is increasingly being used in clinical practice, although information on its metabolism and disposition are still being generated. Therefore a simple, robust and fast liquid-liquid extraction (LLE) followed by high-performance liquid chromatography method is described that could be used for both pharmacokinetic and therapeutic drug monitoring (TDM) purposes. Moreover, recovery rates of LEV in plasma were compared among LLE, stir bar-sorptive extraction (SBSE), and solid-phase extraction (SPE). Solvent extraction with dichloromethane yielded a plasma residue free from usual interferences such as commonly co-prescribed AEDs, and recoveries around 90% (LLE), 60% (SPE) and 10% (SBSE). Separation was obtained using reverse phase Select B column with ultraviolet detection (235 nm). Mobile phase consisted of methanol:sodium acetate buffer 0.125 M pH 4.4 (20:80, v/v). The method was linear over a range of 2.8-220.0 µg mL<sup>-1</sup>. The intra- and inter-assay precision and accuracy were studied at three concentrations; relative standard deviation was less than 10%. The limit of quantification was 2.8 µg mL<sup>-1</sup>. This robust method was successfully applied to analyze plasma samples from patients with epilepsy and therefore might be used for pharmacokinetic and TDM purposes.</p>


1996 ◽  
Vol 79 (6) ◽  
pp. 1454-1458 ◽  
Author(s):  
Frank J Schenck ◽  
Lori Calderon ◽  
Darlene E Saudarg

Abstract Florisil solid-phase extraction cartridges were evaluated for cleanup of organochlorine pesticide residues in food extracts. Elution patterns and recoveries were determined for 24 organochlorine pesticides. A range of elution solvents was evaluated. A 2% ethyl ether–petroleum ether eluant optimized overall recoveries while minimizing interferences from coextractants.


2003 ◽  
Vol 86 (2) ◽  
pp. 412-431 ◽  
Author(s):  
Michelangelo Anastassiades ◽  
Steven J Lehotay ◽  
Darinka Štajnbaher ◽  
Frank J Schenck

Abstract A simple, fast, and inexpensive method for the determination of pesticide residues in fruits and vegetables is introduced. The procedure involves initial single-phase extraction of 10 g sample with 10 mL acetonitrile, followed by liquid–liquid partitioning formed by addition of 4 g anhydrous MgSO4 plus 1 g NaCl. Removal of residual water and cleanup are performed simultaneously by using a rapid procedure called dispersive solid-phase extraction (dispersive-SPE), in which 150 mg anhydrous MgSO4 and 25 mg primary secondary amine (PSA) sorbent are simply mixed with 1 mL acetonitrile extract. The dispersive-SPE with PSA effectively removes many polar matrix components, such as organic acids, certain polar pigments, and sugars, to some extent from the food extracts. Gas chromatography/mass spectrometry (GC/MS) is then used for quantitative and confirmatory analysis of GC-amenable pesticides. Recoveries between 85 and 101% (mostly &gt;95%) and repeatabilities typically &lt;5% have been achieved for a wide range of fortified pesticides, including very polar and basic compounds such as methamidophos, acephate, omethoate, imazalil, and thiabendazole. Using this method, a single chemist can prepare a batch of 6 previously chopped samples in &lt;30 min with approximately $1 (U.S.) of materials per sample.


1992 ◽  
Vol 607 (2) ◽  
pp. 239-243 ◽  
Author(s):  
Georgina Hotter ◽  
Gloria Gómez ◽  
Isabel Ramis ◽  
Gloria Bioque ◽  
Joan Roselló-Catafau ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document