AN OVERVIEW: ENVIRONMENTAL AND ECONOMIC STRATEGIES FOR IMPROVING QUALITY OF SHIPS EXHAUST GASES

2021 ◽  
Vol 157 (A1) ◽  
Author(s):  
I S Seddiek

In spite of the fact that most of different transport means have achieved a significant reduction of their emissions quantity during the last few years; maritime field still suffers from the steady increase in the quantity of exhaust gases emitted from ships. As a result, the International Maritime Organization was prompted to issue a set of regulations for facing the seriousness of those emissions. The present paper handles the different methods which can be used to reduce the environmental damage caused by ship emissions. Through the study of the advantages and disadvantages of ships, emission reduction strategies; use of natural gas, selective catalytic reduction and sea water scrubbing systems have appeared as the best ways that can be utilized to reduce the environmental harms caused by ship emissions. Applicability of these methods aboard ships could vary from ship to another. Two high-speed passenger ships of different age were studied to evaluate the importance of applying these strategies. The results showed the possibility to attain valuable emission reduction percentage by using of selective catalytic reduction and sea water scrubbing systems, but they will be of high initial cost and will increase operating cost of both ships. On the other hand using of LNG as alternative fuel will be more convenient from the point of view of environment and economic issues for the newer existing ship.

2015 ◽  
Vol 157 (A1) ◽  
pp. 53-64 ◽  

"In spite of the fact that most of different transport means have achieved a significant reduction of their emissions quantity during the last few years; maritime field still suffers from the steady increase in the quantity of exhaust gases emitted from ships. As a result, the International Maritime Organization was prompted to issue a set of regulations for facing the seriousness of those emissions. The present paper handles the different methods which can be used to reduce the environmental damage caused by ship emissions. Through the study of the advantages and disadvantages of ships, emission reduction strategies; use of natural gas, selective catalytic reduction and sea water scrubbing systems have appeared as the best ways that can be utilized to reduce the environmental harms caused by ship emissions. Applicability of these methods aboard ships could vary from ship to another. Two high-speed passenger ships of different age were studied to evaluate the importance of applying these strategies. The results showed the possibility to attain valuable emission reduction percentage by using of selective catalytic reduction and sea water scrubbing systems, but they will be of high initial cost and will increase operating cost of both ships. On the other hand using of LNG as alternative fuel will be more convenient from the point of view of environment and economic issues for the newer existing ship."


Author(s):  
Vít Marek ◽  
Lukáš Tunka ◽  
Adam Polcar ◽  
Dušan Slimařík

This paper deals with reduction of NOx-emission of a diesel engine with multiple injection pump by SCR catalytic converter. Main aim of the measurement was the detection of SCR catalyst converter efficiency. Tests were realized at the Research and Development workplace of Zetor Tractor a.s. Used engine was equipped with a multiple injection pump with electromagnetic regulator of a fuel charge. During the experiment selective catalytic reduction and diesel particulate filter were used as an after treatment of harmful pollutants reduction. Testing cycle of the eight-point test was chosen and Non-Road Steady Cycle (NRSC) was maintained according to 97/68/EC directive. Results confirmed the dependencies between temperatures of SCR catalyst and exhaust gases and the volume of exhaust gases on efficiency of SCR catalyst. During the operation load of the engine, selective catalytic reduction reached efficiency over 90 %. Used after treatment system is suitable for reduction of harmful pollutants according to the Tier 4f norm.


2016 ◽  
Vol 10 (5) ◽  
pp. 740-747
Author(s):  
I. V. Kumpanenko ◽  
A. V. Roshchin ◽  
N. A. Ivanova ◽  
I. D. Epinat’ev ◽  
A. M. Skryl’nikov ◽  
...  

Author(s):  
Qinghua Lin ◽  
Pingen Chen

Ammonia storage nonuniformity has a significant impact on the emission reduction performance of urea-based selective catalytic reduction (SCR) systems. In this paper, a unique SCR platform with two catalysts in a parallel configuration was created for investigating the impact of ammonia storage nonuniformity on the emission reduction performance in a simulation environment. The established two-cell SCR platform allows users to independently control the ammonia-to-NOx ratio (ANR) for each catalyst using two independent urea solution injectors. Simulation results over US06 cycle demonstrate that, compared to the case without ammonia storage nonuniformity, the tailpipe NOx and ammonia emissions can be increased by 6.73% and 22.0%, respectively, due to the nonuniform ammonia storage in the case of an ANR nonuniformity index (NUI) at 0.2. Furthermore, an innovative model-based method was proposed for estimating the ammonia coverage ratio nonuniformity (i.e., ammonia storage nonuniformity if storage capacity is known) by utilizing a control-oriented SCR model and the tailpipe NOx and ammonia measurements at the confluence point. Simulation results proved the effectiveness of the proposed method in estimating the ammonia coverage ratio nonuniformity.


Catalysts ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 749
Author(s):  
Filip Kuternowski ◽  
Maciej Staszak ◽  
Katarzyna Staszak

This study presents modeling of selective catalytic reduction (SCR) for systems of diesel exhaust gases aftertreatment. The main purpose of this work is to develop the modeling approach that allows accurate prediction of urea–water solution behavior (UWS) in the real diesel exhausts in temperature range 373 K to 873 K. The UWS is a key element of catalytic reduction of diesel NOx which utilizes ammonia as reducing specie. The finite volume method (FVM) extended by the nonrandom two liquids (NRTL) phase equilibrium model was used to perform the calculations. The results obtained were verified with experimental measurements. The comparison show that the NRTL extension introduced in this work allows reproducing the actual process conditions in the diesel exhaust environment. The accuracy of the results permits the model to be used for the design purposes and simulation approaches as well.


Sign in / Sign up

Export Citation Format

Share Document