SHIP MANOEUVRING PREDICTION BASED ON NUMERICAL TOWING TANK TECHNIQUE

Author(s):  
J Yao ◽  
X Cheng ◽  
Z Liu

A practical procedure is proposed in this paper to predict ship manoeuvrability. A three degrees of freedom MMG (Japanese Manoeuvring Mathematical Modelling Group)-type model is established to simulate rudder manoeuver. Propeller thrust and rudder loads are calculated by empirical formulas, whereas the hull forces as well as moment are determined with hydrodynamic derivatives which are derived from CFD (Computational Fluid Dynamics) computations. An own developed RANS (Reynolds-Averaged Naiver-Stokes) solver on the base of OpenFOAM is applied to simulate a range of PMM (Planar Motion Mechanism) tests and Fourier analyses of the computed results are carried out to obtain the required derivatives. In order to demonstrate the effectivity of the whole procedure and the RANS computations, the US (United States) combatant DTMB 5415 is taken as a sample for an application. Forced motions of surge, sway, yaw and yaw with drift for the bare hull with bilge keels are simulated. Thereafter, simulations of standard rudder manoeuvers, i.e. turning and zigzag, are performed by applying the computed derivatives. The results are compared with available measured data. It has been shown that the present procedure together with the RANS method can be used to evaluate the manoeuvrability of a ship since general good agreements between the simulated results and measured data are achieved.

2018 ◽  
Vol Vol 160 (A3) ◽  
Author(s):  
J Yao ◽  
X Cheng ◽  
Z Liu

A practical procedure is proposed in this paper to predict ship manoeuvrability. A three degrees of freedom MMG (Japanese Manoeuvring Mathematical Modelling Group)-type model is established to simulate rudder manoeuver. Propeller thrust and rudder loads are calculated by empirical formulas, whereas the hull forces as well as moment are determined with hydrodynamic derivatives which are derived from CFD (Computational Fluid Dynamics) computations. An own developed RANS (Reynolds-Averaged Naiver-Stokes) solver on the base of OpenFOAM is applied to simulate a range of PMM (Planar Motion Mechanism) tests and Fourier analyses of the computed results are carried out to obtain the required derivatives. In order to demonstrate the effectivity of the whole procedure and the RANS computations, the US (United States) combatant DTMB 5415 is taken as a sample for an application. Forced motions of surge, sway, yaw and yaw with drift for the bare hull with bilge keels are simulated. Thereafter, simulations of standard rudder manoeuvers, i.e. turning and zigzag, are performed by applying the computed derivatives. The results are compared with available measured data. It has been shown that the present procedure together with the RANS method can be used to evaluate the manoeuvrability of a ship since general good agreements between the simulated results and measured data are achieved.


Author(s):  
Andrew Ross ◽  
Vahid Hassani ◽  
Ørjan Selvik ◽  
Edvard Ringen ◽  
Dariusz Fathi

A nonlinear manoeuvring model in three degrees of freedom is presented. MARINTEK’s approach to the numerical determination of this manoeuvering model’s parameters is then shown. Finally the process of taking advanced experimental methods, and utilising MARINTEK’s numerical tools to generate an advanced model available for use in VeSim, MARINTEK’s in-house simulator tool, is shown as a demonstration that the model combined with numerical tools is of great use in making manoeuvring predictions.


2018 ◽  
Vol 51 (13) ◽  
pp. 372-377 ◽  
Author(s):  
Juan E. Andrade García ◽  
Alejandra Ferreira de Loza ◽  
Luis T. Aguilar ◽  
Ramón I. Verdés

Author(s):  
A. H. S. Iyer ◽  
M. H. Colliander

Abstract Background The trend in miniaturisation of structural components and continuous development of more advanced crystal plasticity models point towards the need for understanding cyclic properties of engineering materials at the microscale. Though the technology of focused ion beam milling enables the preparation of micron-sized samples for mechanical testing using nanoindenters, much of the focus has been on monotonic testing since the limited 1D motion of nanoindenters imposes restrictions on both sample preparation and cyclic testing. Objective/Methods In this work, we present an approach for cyclic microcantilever bending using a micromanipulator setup having three degrees of freedom, thereby offering more flexibility. Results The method has been demonstrated and validated by cyclic bending of Alloy 718plus microcantilevers prepared on a bulk specimen. The experiments reveal that this method is reliable and produces results that are comparable to a nanoindenter setup. Conclusions Due to the flexibility of the method, it offers straightforward testing of cantilevers manufactured at arbitrary position on bulk samples with fully reversed plastic deformation. Specific microstructural features, e.g., selected orientations, grain boundaries, phase boundaries etc., can therefore be easily targeted.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Xiaohui Liu ◽  
Ming Zou ◽  
Chuan Wu ◽  
Mengqi Cai ◽  
Guangyun Min ◽  
...  

A new quad bundle conductor galloping model considering wake effect is proposed to solve the problem of different aerodynamic coefficients of each subconductor of iced quad bundle conductor. Based on the quasistatic theory, a new 3-DOF (three degrees of freedom) galloping model of iced quad bundle conductors is established, which can accurately reflect the energy transfer and galloping of quad bundle conductor in three directions. After a series of formula derivations, the conductor stability judgment formula is obtained. In the wind tunnel test, according to the actual engineering situation, different variables are set up to accurately simulate the galloping of iced quad bundle conductor under the wind, and the aerodynamic coefficient is obtained. Finally, according to the stability judgment formula of this paper, calculate the critical wind speed of conductor galloping through programming. The dates of wind tunnel test and calculation in this paper can be used in the antigalloping design of transmission lines.


2015 ◽  
Vol 7 (3) ◽  
Author(s):  
Hamed Khakpour ◽  
Lionel Birglen ◽  
Souheil-Antoine Tahan

In this paper, a new three degrees of freedom (DOF) differentially actuated cable parallel robot is proposed. This mechanism is driven by a prismatic actuator and three cable differentials. Through this design, the idea of using differentials in the structure of a spatial cable robot is investigated. Considering their particular properties, the kinematic analysis of the robot is presented. Then, two indices are defined to evaluate the workspaces of the robot. Using these indices, the robot is subsequently optimized. Finally, the performance of the optimized differentially driven robot is compared with fully actuated mechanisms. The results show that through a proper design methodology, the robot can have a larger workspace and better performance using differentials than the fully driven cable robots using the same number of actuators.


Sign in / Sign up

Export Citation Format

Share Document