An Approach to Measuring Ship Design Complexity

2021 ◽  
Vol 163 (A2) ◽  
Author(s):  
A Ebrahimi ◽  
S O Erikstad ◽  
P O Brett ◽  
B E Asbjørnslett

Understanding different aspects of complexity and measuring them properly are important steps of handling ship design complexity effectively. The main objective of this article is to develop a practical and comprehensive method to measure ship design complexity. In engineering design, complexity is measured today by different indexes and methods. This paper initially explores the applicability of such measures in a ship design context supported by a review of different relevant user-cases. However, it is acknowledged that most of these measurement methods focus on product-related complexity aspects and rarely address or quantify complexities generated by the design process, the organisation of the firm, or the market situation. Therefore, this paper introduces a new and comprehensive model to measure ship design complexity including all these aspects. The model quantifies ship design complexity by means of the following nine different descriptive factors: directional, spatial, decision-making, structural, behavioral, contextual, perceptual, temporal, and technological complexity.

2014 ◽  
Vol 22 (1) ◽  
pp. 48 ◽  
Author(s):  
Zhen ZHANG ◽  
Fan ZHANG ◽  
Liang HUANG ◽  
Bo YUAN ◽  
Yiwen WANG

Author(s):  
S. Raza Wasi ◽  
J. Darren Bender

An interesting, potentially useful, and fully replicable application of a spatially enabled decision model is presented for pipeline route optimization. This paper models the pipeline route optimization problem as a function of engineering and environmental design criteria. The engineering requirements mostly deal with capital, operational and maintenance costs, whereas environmental considerations ensure preservation of nature, natural resources and social integration. Typically, pipelines are routed in straight lines, to the extent possible, to minimize the capital construction costs. In contrast, longer pipelines and relatively higher costs may occur when environmental and social considerations are part of the design criteria. Similarly, much longer pipelines are less attractive in terms of capital costs and the environmental hazard associated with longer construction area. The pipeline route optimization problem is potentially a complex decision that is most often undertaken in an unstructured, qualitative fashion based on human experience and judgement. However, quantitative methods such as spatial analytical techniques, particularly the least-cost path algorithms, have greatly facilitated automation of the pipeline routing process. In the past several interesting studies have been conducted using quantitative spatial analytical tools for finding the best pipeline route or using non-spatial decision making tools to evaluate several alternates derived through conventional route reconnaissance methods. Most of these studies (that the authors are familiar with) have concentrated on integrating multiple sources of spatial data and performing quantitative least-cost path analysis or have attempted to make use of non-spatial decision making tools to select the best route. In this paper, the authors present a new framework that incorporates quantitative spatial analytical tools with an Analytical Hierarchical Process (AHP) model to provide a loosely integrated but efficient spatial Decision Support System (DSS). Specifically, the goal is to introduce a fully replicable spatial DSS that processes both quantitative and qualitative information, balances between lowest-cost and lowest-impact routes. The model presented in this paper is implemented in a four step process: first, integration of multiple source data that provide basis for engineering and environmental design criteria; second, creation of several alternate routes; third, building a comprehensive decision matrix using spatial analysis techniques; and fourth, testing the alternative and opinions of the stakeholder groups on imperatives of AHP model to simplify the route optimization decision. The final output of the model is then used to carry out sensitivity analysis, quantify the risk, generate “several what and if scenarios” and test stability of the route optimization decision.


2021 ◽  
Vol 10 (6) ◽  
pp. 403
Author(s):  
Jiamin Liu ◽  
Yueshi Li ◽  
Bin Xiao ◽  
Jizong Jiao

The siting of Municipal Solid Waste (MSW) landfills is a complex decision process. Existing siting methods utilize expert scores to determine criteria weights, however, they ignore the uncertainty of data and criterion weights and the efficacy of results. In this study, a coupled fuzzy Multi-Criteria Decision-Making (MCDM) approach was employed to site landfills in Lanzhou, a semi-arid valley basin city in China, to enhance the spatial decision-making process. Primarily, 21 criteria were identified in five groups through the Delphi method at 30 m resolution, then criteria weights were obtained by DEMATEL and ANP, and the optimal fuzzy membership function was determined for each evaluation criterion. Combined with GIS spatial analysis and the clustering algorithm, candidate sites that satisfied the landfill conditions were identified, and the spatial distribution characteristics were analyzed. These sites were subsequently ranked utilizing the MOORA, WASPAS, COPRAS, and TOPSIS methods to verify the reliability of the results by conducting sensitivity analysis. This study is different from the previous research that applied the MCDM approach in that fuzzy MCDM for weighting criteria is more reliable compared to the other common methods.


Author(s):  
Henrik Nerga˚rd ◽  
Tobias Larsson

In this paper empirical finding from a study conducted at an aerospace company is compared to theory regarding Experience Feedback (EF), Lessons Learned (LL) and Decision Making (DM). The purpose with the study was to examine how EF within the organization was conducted and what problems and possibilities that was seen. A qualitative approach was taken and interviews and a workshop was conducted. The empirical findings show that EF exist on different levels within the organization but current feedback processes are currently leaning more towards archiving and storing than knowledge sharing and learning. Also passive dissemination approaches are mostly used whereas active dissemination within the correct context is needed The aim with this paper is to discuss issues and empirical findings that should be considered when creating work methods and systems that support learning by EF and LL dissemination.


1999 ◽  
Vol 11 (4) ◽  
pp. 218-228 ◽  
Author(s):  
Michael J. Scott ◽  
Erik K. Antonsson

2021 ◽  
pp. 2008161
Author(s):  
Nirosha J. Murugan ◽  
Daniel H. Kaltman ◽  
Paul H. Jin ◽  
Melanie Chien ◽  
Ramses Martinez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document