scholarly journals A Novel Hybrid Compensation Method Reducing the Effects of Distorted Input Voltages in Matrix Converters

2019 ◽  
Vol 25 (6) ◽  
pp. 15-21
Author(s):  
Hulusi Karaca ◽  
Ramazan Akkaya

Matrix converters have the most compact and efficient AC-AC converter structure due to the lack of the DC intermediate components. The matrix converter makes a single-stage conversion directly connecting any terminal of voltage source to any terminal of load. This outstanding feature leads to some problems that must be overcome under the distorted input voltage conditions. A matrix converter has low immunity to power source disturbances, because it has no DC intermediate circuit. Any disturbance in the power source creates a negative effect on the load of the matrix converter and on the current drawn from the source. In this study, a novel compensation method, which provides immunity against input voltage disturbances, is suggested for the matrix converter. The suggested method has a hybrid structure, which includes both feedforward and fuzzy logic controller based feedback methods. The effectiveness and accuracy of the suggested new hybrid compensation approach are proved by the various results obtained.

Author(s):  
Hassan Farahan Rashag

This paper suggested a new contribution of three phase AC to AC matrix converter MC via fuzzy logic controller FLC to enhance the whole system. However, the weakness of matrix converter is that the input- output voltage transfer is control to 87% for input and output waveform. Also, matrix converter is more sensitive to the trouble of input voltage which deteriorates the system performance. To overcome these problems, and to improve the efficiency of system, FLC with matrix converter is proposed to minimize the sensitivity to the load, and to increase voltage transfer. In this paper the currents a,b,c are converted to alpha and beta current via Clarke transformation . In this method two FLC are used. The error (between alpha current and reference current) (e) and the change of this error (de) will apply to first FLC. The output of FLC is actual alpha current. In the other hand, the error of beta current and the change of error are also passes through the second FLC to produce the actual beta current. The actual alpha and beta current is converted to direct and quadrature d-q current by park transformation. The d-q current is converted to (a, b, c) out currents by inverse park transformation, the results of this method express that the matrix converter with FLC is more capable, high accuracy with better efficiency as compared with conventional matrix converter system.


2018 ◽  
Vol 7 (4) ◽  
pp. 2672
Author(s):  
Shamsher Ansari ◽  
Aseem Chandel ◽  
SMIEEE . ◽  
Zulfiqar Ali Sheikh

Recently the tremendous advancement has been seen in the field of matrix converter topology. For high power drive applications, industries often need high power AC-AC converters like three level matrix converter because it is having the ability to generate a set of balanced sine waves for inputs as well as outputs. The three level matrix converters possess better output performance with reduced harmonic contents compared to all two-stage indirect matrix converters. In this matrix converter topology, the idea of neutral-point clamped-VSI is employed to the inversion step of the matrix converter circuitry. To control the power switches the gate signals are produced using NTVV based space vector modulation. To justify the theoretical study a complete model of a three-level twin-step matrix converter has been designed in Matlab/Simulink and its performances are analysed.  


Author(s):  
Abhinav Vinod Deshpande

The matrix converter converts the input line voltage into a variable voltage with an unrestricted output frequency without using an intermediate circuit, dc link circuit. A pure sine in and pure sine out is the unique feature of the matrix converter. This research paper also analyzes the basic operating principle and the simulation modeling of the direct matrix converter, which is controlled by the Space Vector Pulse Width Modulation technique by using the software which is known as MATLAB/Simulink. The most desirable features in the power frequency changes can be fulfilled by using the matrix converters, and this is the reason for the tremendous interest in the topology. Since the power electronic circuits which is known as the motor drives are used to operate the AC motors at the frequencies other than that of the supply.


Author(s):  
Branislav Dobrucky ◽  
Slavomir Kascak ◽  
Michal Prazenica ◽  
Roman Konarik

The paper deals with a modeling and simulation of the direct AC-AC propulsion system and compares two matrix converter concepts with five-phase traction induction motors (IM) for the hybrid electric vehicle (HEV). The simulation results of [3x5] matrix converter and 4Q-converter are done using Matlab-Simulink environment. Part I deals with a theoretical study of converter concepts for hybrid electric vehicle, since the configurations of [3x5]+[0x5] matrix converters with five-phase motor(s) have not been analyzed so far. Based on simulation results the comparison and evaluation of the property and quality of the quantities of different type of the matrix powertrain are discussed in Part II.


Author(s):  
Neerakorn Jarutus ◽  
Yuttana Kumsuwan

Based on Venturini method, it is in favor of the modulation technique for controlling the matrix converter due to only use of the comparison between the duty cycles in time domain and the triangular carrier wave for generating the gating signals and the achievable voltage ratio between fundamental output magnitude and fundamental input magnitude to 0.866. However, even with simple modulation method and achieving maximum fundamental output magnitude, the possible input voltage unbalance conditions accordingly influence on the output performances (more reduction and distortion). Thus, a control strategy based on Venturini method is presented in this paper, in order to solve the impacts of unbalanced input voltage conditions on the matrix converter performances. Conceptually, this strategy is done by modifying the mathematical model for controlling the modulating waves to satisfy the desirable feature, as generated in the event of normal situation. Up to this approach, it can support either single-phase condition or two-phase condition. Performance of the proposed control strategy was verified by the simplified simulation model in the MATLAB/Simulink software. It is clearly shown that the matrix converter can be controlled for regulating the balanced output voltages with showing good steady-state and dynamic operations without the energy storage devices.


Author(s):  
RASHMI S. PHASATE ◽  
ARCHANA BAWANKAR

This paper proposes a hybrid filter to minimize the power quality impact of matrix converters. Matrix converters inject significant harmonics and nonstandard frequency components into power systems. The hybrid filter is used to reduce the harmonics. A hybrid filter constructed of a shunt active filter and distributed passive filters used for power quality improvement. The proposed approach has been tested and validated on the matrix converter using Matlab/Simulink. The comparison of Simulation results for passive and active filter separately used with matrix converter with the result of matrix converter with hybrid filter is shown to demonstrate the advantages of the proposed scheme.


Sign in / Sign up

Export Citation Format

Share Document