scholarly journals Ferroelectric, Leakage Current Properties of BiFeO3/Pb(Zr0.52Ti0.48)O3Multilayer Thin Films Prepared by Chemical Solution Deposition

2010 ◽  
Vol 19 (1) ◽  
pp. 52-57 ◽  
Author(s):  
J.O. Cha ◽  
J.S. Ahn ◽  
K.B. Lee
2013 ◽  
Vol 566 ◽  
pp. 159-162
Author(s):  
Yuya Ito ◽  
Makoto Moriya ◽  
Wataru Sakamoto ◽  
Toshinobu Yogo

Ferroelectric 0.7BiFeO3-0.3BaTiO3 and 0.7BiFe0.95Mn0.05O3-0.3BaTiO3 thin films were prepared by the chemical solution deposition. Perovskite single-phase thin films with homogeneous surface morphology were successfully fabricated at 700°C on Pt/TiOx/SiO2/Si substrates. Although typical polarization (P)-electric field (E) hysteresis loops were observed for 0.7BiFeO3-0.3BaTiO3 thin films, their insulation resistance was relatively low at room temperature. Mn doping for Fe site of the 0.7BiFeO3-0.3BaTiO3 was very effective in improving leakage current properties. In 0.7BiFe0.95Mn0.05O3-0.3BaTiO3 thin films, the abrupt increase in leakage current was suppressed even at high electric fields, leading to the well-shaped P-E hysteresis loops at ambient temperatures. Remanent polarization and coercive field of the 0.7Bi (Fe0.95Mn0.05)O3-0.3Bi0.5Na0.5TiO3 films at room temperature were approximately 26 μC/cm2 and 130 kV/cm, respectively.


2007 ◽  
Vol 1034 ◽  
Author(s):  
Hiroshi Naganuma ◽  
Jun Miura ◽  
Soichiro Okamura

AbstractCr, Mn, Co, Ni and Cu of 5 at % s added BiFeO3 films were fabricated by chemical solution deposition on 111-textured Pt/Ti/SiO2/Si(100) substrates. Only the diffraction peaks attributed to BiFeO3 structure could obtain except the Ni and Cr additions. The BiFeO3 films became almost amorphous by adding Ni, and non ferroelectric Bi7CrO12.5 phase was formed by adding Cr. AFM images indicated the surface morphology of the films was drastically changed by the additives. The leakage current was reduced by adding Mn, Cu and Co, although the electric coercive field increased in the case of Co addition. Therefore, it could be concluded that Mn and Cu additives improved not only the leakage current properties but also the ferroelectric properties in the course of CSD process. It should be noted that this is the first report showing the improvement of ferroelectricity of BiFeO3 films by adding Cu.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Venkata Sreenivas Puli ◽  
Shiva Adireddy ◽  
Dhiren K. Pradhan ◽  
Ram S. Katiyar ◽  
Douglas B. Chrisey

Nanoscale switchable ferroelectric (Ba0.50Sr0.50)(Ti0.80Sn0.20)O3-BSTS polycrystalline thin films with a perovskite structure were prepared on Pt/TiOx/SiO2/Si substrate by chemical solution deposition. X-ray diffraction (XRD) spectra indicate that a cubic perovskite crystalline structure and Raman spectra revealed that a tetragonal perovskite crystalline structure is present in the thin films. Sr2+and Sn4+cosubstituted film exhibited the lowest leakage current density. Piezoresponse Force Microscopy (PFM) technique has been employed to acquire out-of-plane (OPP) piezoresponse images and local piezoelectric hysteresis loop in polycrystalline BSTS films. PFM phase and amplitude images reveal nanoscale ferroelectric switching behavior at room temperature. Square patterns with dark and bright contrasts were written by local poling and reversible nature of the piezoresponse behavior was established. Local piezoelectric butterfly amplitude and phase hysteresis loops display ferroelectric nature at nanoscale level. The significance of this paper is to present ferroelectric/piezoelectric nature in present BSTS films at nanoscale level and corroborating ferroelectric behavior by utilizing Raman spectroscopy. Thus, further optimizing physical and electrical properties, BSTS films might be useful for practical applications which include nonvolatile ferroelectric memories, data-storage media, piezoelectric actuators, and electric energy storage capacitors.


2004 ◽  
Vol 58 (29) ◽  
pp. 3725-3728 ◽  
Author(s):  
Xuena Yang ◽  
Baibiao Huang ◽  
Hongbin Wang ◽  
Shuxia Shang ◽  
Weifeng Yao ◽  
...  

2009 ◽  
Vol 1199 ◽  
Author(s):  
TruongTho Nguyen ◽  
Takeshi Kanashima ◽  
Masanori Okuyama

AbstractFerroelectric Bi1.1Fe0.9Co0.1O3 (BFCO) thin films were prepared on Pt/TiO2/SiO2/Si substrates by chemical solution deposition method using rapid thermal annealing (RTA). The thickness of all BFCO thin films is about 100 nm. Although the BFCO prepared at 545°C has a large value of difference of polarization at zero field, 88 C/cm2, the P-E hysteresis loop of the BFCO thin film prepared at 520°C looks like more saturated and shows 47 C/cm2 of difference of polarization at zero field in the applied electric field of 2 MV/cm. The leakage current of the BFCO film annealed at 520°C, is about 2 × 10-2 A/cm2 at room temperature (RT). Moreover, it is also shown that the saturated possibility of P-E hysteresis loops and in 2 MV/cm their apparent difference of polarization at zero field depend on not only the leakage current but also scanning frequency used to measure BFCO thin films. Accordingly, the P-E hysteresis loops of BFCO thin films prepared from 520°C to 545°C seem to be saturated at high frequency from 10 KHz to 20 KHz when these samples are measured at RT.


Sign in / Sign up

Export Citation Format

Share Document